THE UNIFRAME SYSTEM-LEVEL

GENERATIVE PROGRAMMING FRAMEWORK

A Thesis
Submitted to the Faculty
of
Purdue University
by

Zhisheng Huang

In Partial Fulfillment of the
Requirements for the Degree
of

Master of Science

August 2003

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
AUG 2003 2. REPORT TYPE 00-00-2003 to 00-00-2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The Uniframe System-L evel Generative Programming Framework £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Indiana Univer sity/Pur due Univer sity,Department of Computer and REPORT NUMBER
Information Sciences,| ndianapolis,I N,46202

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 278
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

To Ping.

ACKNOWLEDGEMENTS

The graduate education in the MS program at the Department of Computer and
Information Science of Indiana University-Purdue University Indianapolis (IUPUI) has
been aturning point and great experience in my life. It helps meto realize my potential as
a good computer professional. The knowledge gained will be valuable to me throughout
my career. My work as a Research Assistant on the UniFrame research project was a
great opportunity to further enhance the skills acquired during my graduate study. |
would like to take this opportunity to express my sincere gratitude to all those who
helped to make my graduate study fruitful and make this thesis possible.

| would like to profoundly thank my advisors Dr. Ragjeev Rgje and Dr. Andrew
Olson for their great guidance throughout the course of my study and research work.
Their immense inputs and insights were invaluable for this thesis. | am very grateful to
them for their constant encouragement, making me reach higher in all my academic
endeavors.

| would aso like to thank Dr. Jeffery Huang for being on my thesis committee
and for the effort to review my thesis. | am aso very grateful to him for his
encouragement in my endeavor in the computer science.

| would like to thank al my colleagues on the UniFrame project, the faculty and
staff of the Department of Computer and Information Science of IUPUI for their
assistance towards this thesis.

| am thankful to the U.S. Department of Defense and the U.S. Office of Naval
Research for supporting this research under award number NO0014-01-1-0746.

Finally, 1 would like to thank my wife for her great love, encouragement and

support, which have been the source of my inspiration and strength all the time.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... e e e i
TABLE OF CONTENTS ... e e e e e e v
LIST OF TABLES ... e e e IX
LIST OF FIGURES e e e e e e et e et aeee e XV
L INTRODUGCTION ..ttt e e et e et et e e et e e e e aeee e eanaenaas 1

1.1 Problem Definition and MOtiVatioN............oovvieiin i e e 2
L2 ODJECHVES ...t e e e e e e e 4
1.3 CONtHDULIONS ... 5
1.4 TheSiSOrganiZationccoieniteeee it it e e e e ie e e eeneeneenl O

2. BACKGROUND AND RELATED WORKoiiiiiiiii e e 7

2.1 Generative Programiming.........o.o e oee e ieeeeee e e e eae e e e eneaees 7
2.2 ProduCt LiNE PraCtiCe.......ocoui ittt e e e e 10
2.3 Domain Engineering Methods and Technologies...............ccccovi 11
2.3.2DF8C0. .. .ttt e 13
2.3.3GENVOCA. ... ce ettt e e e e 1D

3. OVERVIEW OF THEUNIFRAME ... 17

3.1 The Unified Meta-Component Model (UMM)..........coeoeveiveiviienn.... 18

Page

3. 1.1 COMPONENES ...ttt et e e et et et e e e e e aa e eaeenne 18

3.1.2 Serviceand Service GUaraNteESueviie i ieieeieeiiiaien 19

B L3 INFrESIIUCIUIE .ot v et e e e e e e e 19
3.2TheUniFrame ApproaCh (UA)o e e e e 20
3.2.1 Generative Domain ENGINEENTNGvvvieiieieiie e e e aenaenenn 21

3.2.2 Component ENGINEEIiNgc.vvieieeieie e e ee e e e eaen 22

3.2.3 Active Distributed Component Management 22

3.2.4 Generative Application ENgineering..........cooveviieineineinannnn. 22

3.3 UMM SPeCfiCalioNcuieiiie e e e e a0 23
3.4 The UniFrame QOS Framework (UQOS)ccoovireiiii i, 27

3.5 The UniFrame Resource Discovery Service (URDS)cevvvveen. ... 29
3.6 The UniFrame System-Level Generative Programming Framework

(825 o TP 32
4. THE UNIFRAME GDM (UGDM)....ctttit it it e et e et e e e 34
4.1 Feature MOOE NGttt e e e e e e e 34
4.2 The UniFrame Domain Specific Language (UDSL)ccoovveiiiiieninnn, 36
4.2.1 Introduction to Domain-SpecificLanguageooveveennnnn. 37
4.22Detaill of the UDSLoviii it e e 37
4.2.3 Three Forms of the Feature Description for a Feature Diagram
INTNEUDSL ...t e e e e e e e 48
4.2.4 Implementation of the UDSL ..o 51
4.3 The UniFrame GDM (UGDM).......c.uiuiiiiie it e e e 52
4.3.1 Genera Information inthe UGDMccooiiiiiiii i, 53
4.3.2 Problem Space intheUGDMc.cov i 54
4.3.3 Solution Space iNthe UGDMcoooiiiiiiiiii e, 57
5. THE UNIFRAME UGDM DEVELOPMENT PROCESS (UGDP) 67
5.10verview of theUGDNP...........ooi i e e, 67

5.2D0MaiN ANAYSIS. ...ttt ittt e e et e e e e e e ae e e OO

Vi

Page

5.2.1 Domain DEfiNitiONiuvieie it 69
5.2.2D0main Modelingc.ovviieiie e 73

5.3 DOMEAIN DESIGN .ttt ettt e e e e e e e e e 77
5.3.1 Designing a Common Layered Architecture........................... 78

5.3.2 Creating Component Diagrams.cooevueiiiienieiiiieeeeeen, 89

5.3.3 Creating Sequence DiagramsS.........coevvevue e e ceieiieieneaaeeen 91

5.3.4 Refining Critical Use Case Model to Abstract Component Level... 93
5.3.5 Identifying Component Interfaces and Communication Patterns... 93
5.3.6 Refining Critical Use Case Modé to the Function/Interface

5.3.7 Refining Architecture Model in Digjunctive Normal Form from
Component Level to Function/Interface Level....................... 100
5.3.8 Mapping Architecture Model to Critical Use Case Model
(Function/InterfaceLevel)........ccoovvvivii i, 102
5.3.9 Creating Abstract Component Modeloooiiiiiiinnis 103
5.3.10 Creating QoS Composition and Decomposition Modd! 103

5.4 Ordering Language DeSIgNvve it e e e e e e e e e eae e 104

6. THE UNIFRAME SY STEM GENERATION INFRASTRUCTURE (USGlI)........ 107

6.1 Overview of the USGI Architecture..........oovvvveviieiiiiiiee e e 107
6.2 Modeling the USGI Workflowcccoeeiiiiiiiiiiici i eeenn.. 110

6.2.1 USGI Activity Diagram.............coccevviieiieiiiinecie e e ennan. 110
6.2.2 USGI Object FIOWcovvivie e e 113

6.3 Modulesof theUSGI ..o e, 113
6.3.1 Data Structures Used in Algorithmsin Modules of USGI 113
6.3.3 Wrapper and Glue Generator.............vevveiveiieeieie e vennenn 117
6.3.4 UGDM Knowledge Base (UGDMKB)............ccoevveeieeennnnn, 119

6.3.5 UGDMKB Builder Terminalcccoceviiiiiiniininnnenn.. 119
6.3.6 UGDMKB Generator............cocoovviviii i iniiiiiiieneneeeenn. 119

Vii

Page

6.3.7 Application Programmer Terminalccccoviiiiii i iennns 120

6.3.8 Order PrOCESSON et ittt e et et e e aeean 121

6.3.9 SYSEM GENEIEION ... et ce e et ettt e ee e eaeaeeaes 122

7. THE USGI PROTOTYPE DESIGN AND IMPLEMENTATIONcccevvvnne. 136
750 R 1= T oo 1Y 136
7.1.1 J2EE™ Application MOdelveeiiiiiie e 136

7.1.2 J2EE™ COMPONENES.vv e e e 137
7.1.3Service TEChNOIOQIES. v e e e, 139

7.1.4 Communication Technologies............coviiiie i i 140

7.2 USGI Prototype DeSIGN ...t e e e e e e e e 141

7.3 USGI Prototype Implementationcooovviviieiiiiiiiiiiie e e ennnn. 143
7.3.1 Platformand Environment..........ccoveveiie i 143

7.3.2 Communication INfrastructure..............coovviiiie i 143

7.3.3 Implementation DetailS............coovi i 144

7.3.4 Experimental RESUILS..........covvvvi i 180

8. CONCLUSIONttt et et e e e e e e e e e e e e e e e e et e e aenens 185
8.1 0utcome of the Study ..o 185
B2 FULUTE WOIK ... et e e e e e 187
8.2.1 Future Work onthe UGDMovii i e, 187

8.2.2 Future Work onthe UGDP..........cccoiiii i, 187

8.2.3 Future Work on the USGI Architecture................oooevviiennnnn. 190

8.2.4 Future Work on the USGI Prototype..........coovvviiiiiiinninnnns 190

B3 SUMIMAIY ... e e e e e e e e e e e 192

APPENDIX A: The Normalization Rules and Expansion Rules for Feature
DS o] o 1 o o AR 193
APPENDIX B: Component Diagrams in the Banking Domain Example........ 195

APPENDIX C: Sequence Diagramsin the Banking Domain Example.........

APPENDIX D: Function Summary of Abstract Componentsin the

Banking Domain Exampleccovviiiiiiiciie e
APPENDIX E: Interface Model for the Banking Domain Example...............

APPENDIX F: Abstract Component Model for the Banking Domain

APPENDIX G: QoS Composition and Decomposition Rules for the

Banking Domain Examplec.cooiiiiiiiiiiiiie e

APPENDIX H: QoS Composition and Decomposition Model for the

Banking Domain Exampleccovviiiiiiiicine e
APPENDIX |: UGDM in XML Format for the Banking Domain Example...
APPENDIX J UGDM Example: Banking Domain Example...................
APPENDIX K ACIONYIMS. ..ot e e e e e e e e e e

LISTOF REFERENCES.......co

LIST OF TABLES
Table Page
Table2.1 Outline Of DEMRALLuiii e e e e e 12
Table 3.1 UMM Specification TemMpPlateouuieiieiie i e 23
Table 3.2 UMM Specification Template (Continued from Table 3.1) 24
Table 4.1 BNF Definition of the UDSL.......c.ooiii i e 38
Table 4.2 BNF Definition of the UDSL (Continued from Table4.1) 39
Table 4.3 Feature Description of TransactionSubsystemin the Hierarchical Form....... 49
Table 4.4 Feature Description of TransactionSubsystem in the Normalized Form........ 50

Table 4.5 Feature Description of TransactionSubsystem in the Digjunctive Normal
0] 1 PPN o X

Table 4.6 Outline Oof tNE UGDM ..ot e 52
Table4.7 An Example of theUCM ... e e e 54
Table 4.8 An Example of the QRM ... e e e e 55
Table4.9 An Exampleof the AMHF........oo i e 56
Table 4.10 An Example of the System-Level MM ... ievve. 56
Table 4.11 An Example of the AMDNF at the Abstract Component Level................ 58
Table 4.12 An Example of the AMDNF at the Function/Interface Levd 59

Table4.13 AnExample of AMM ... e e e D9
Table4.14 An Example of ACIM ..o ee a0, B0
Table 4.15 An Example of Component-level MMccoviiii i iieennn 61
Table4.16 An Example of an Interface..........c.oovveiiiiiiiiii e 62
Table4.17 AnExample of ACIMouviiiiii e enl B2
Table4.18 AnExample of CUCMcoiiiii i e a0, ©4

Table Page
Table 4.19 An Example of AMDNF and CUCM Mapping

(Function/Interface Level)cooi i 64
Table 4.20 An Example of QCDMcooiii it i it et e e e neiienaee, 0D
Table5.10utline of the UGDP.........cciii it e e e ieeee.. . B8
Table 5.2 Domain Description for the Banking Domain Example........................... 70
Table 5.3 Description of the UCM for the Banking Domain Example...................... 72
Table 5.4 Domain Dictionary for the Banking Domain Example..................coooils 73
Table 5.5 Use Case Model inthe UDSL for the Banking Domain Example............... 74
Table 5.6 Key Concepts in the UDSL for the Banking Domain Example.................. 75
Table 5.7 QRM in the UDSL for the Banking Domain Example...................cooeu.e. 77
Table 5.8 CUCM in the UDSL for the Banking Domain Example........................... 77
Table 5.9 Constraintsin the UDSL for the Banking Domain Example (Layer 1)......... 81
Table 5.10 Design Feature Description for the Banking Domain Example (Layer 1).....81
Table 5.11 Constraintsin the UDSL for the Banking Domain Example (Layer 2)........ 83
Table 5.12 Design Feature Description for the Banking Domain Example (Layer 2).....83
Table 5.13 Constraints in the UDSL for the Banking Domain Example (Layer 3)........ 84
Table 5.14 Design Feature Description for the Banking Domain Example (Layer 3).....85
Table 5.15 Constraints in the UDSL for the Banking Domain Example.................... 86
Table 5.16 Design Feature Description for the Banking Domain Example................. 87
Table5.17 AMHF in the UDSL for the Banking Domain Example......................... 87
Table5.18 ACIM inthe UDSL for the Banking Domain Example......................... 88
Table 5.19 System-Level Multiplicity Model in the UDSL for the Banking Domain

EXAMPIE e 88
Table 5.20 Component-level Multiplicity Model in the UDSL for the Banking

DomMain EXamMPle ... 88
Table5.21 AMNF in the UDSL for the Banking Domain Example......................... 90

Table 5.22 Architecture Model in Disunctive Normal Form (Abstract Component
Level) inthe UDSL for theBank Exampleccccooviiiii i 90

Xi

Table Page
Table 5.23 CUCM (Abstract Component Level) in the UDSL for the Banking
Domain EXample.......ouvieie e e e e 92

Table 5.24 Function Summary for TransactionManager in the Banking Domain

Table 5.26 Provided Interfaces and Required Interfaces of Abstract Components for
the Banking Domain Example...........oooiiii i, 95
Table 5.27 Abstract Components at Functional/Interface Level in the UDSL for the

Banking Domain EXample...........ooviiiiiiiiie e e e e e 96
Table5.28 ACIM in the UDSL for the Banking Domain Example 96
Table5.29 ACIM in the UDSL for the Banking Domain Example (Continued from

TaADIE 5.28) ... e 97

Table 5.30 Mapping of Abstract Component from Component Level to Function

/Interface Level in the UDSL for the Banking Domain Example.............. 97
Table 5.31 CUCM at Function/Interface Level for the Banking Domain Example....... 98
Table 5.32 CUCM at Function/Interface Level for the Banking Domain Example

(Continued from Table5.31)..c..v i e, 99
Table 5.33 Normalized Expression of CUCM at Function/Interface Level for the

Banking Domain EXamMpPIe..........ocoieiiiiie e 99
Table 5.34 Digunctive Normal Form of the CUCM at Function/Interface Level

inthe UDSL for the Banking Domain Example.................................. 100
Table 5.35 AMDNF at Function/Interface Level inthe UDSL for the Banking

Domain EXampPle... ... e e 101

Table 5.36 Mapping of AMDNF from Component Level to Function/Interface

Level inthe UDSL for the Banking Domain Example........................... 102
Table 5.37 AMDNF and CUCM Mapping (Function/Interface Level) for the

Banking Domain EXamMPIeoov i e 102

Table
Table 5.38 QoS Composition and Decomposition Meta-Rules Used in the

Banking Domain EXampPle..........ccvieieie i

Table 5.39 Tabular Ordering Language for the Banking Domain Example..........

Table 5.40 Mapping Rules for the Tabular Ordering Language of the Banking

Domain EXamMPIe..... ... e e e
Table 6.1 Data Structure for Algorithmsin System Generator.........................

Table 6.2 Data Structure for Algorithmsin System Generator (Continued from

L 5 LX< 5 U TR

Table 6.3 Data Structure for Algorithmsin System Generator (Continued from

LI (=197 PSS
Table 6.4 Process for System Generation.........coovueveveiviiiei i e e e eae e
Table 8.1 AMDNEF in XML the format Created by the GME Interpreter
Table A.1 Normalization Rules for Feature Description.............coooiiiiiineinnns
Table A.2 Expansion Rules for Feature DesCription..........c.ccovviiiiiiiiicie e e e,
Table D.1 Function Summary for TransactionManagerccoevvevvveinennnns
Table D.2 Function Summary for CashierTerminal..............ccoiiiiiiiii i,
Table D.3 Function Summary for ATM ... e e
Table D.4 Function Summary for AccountDatabase.............ccccoeveeveiiieninnnns
Table D.5 Function Summary for DeluxeTransactionServer..............cooevvevne.
Table D.6 Function Summary for EconomicTransactionServerc.o.o.v. ..
Table D.7 Function Summary for CashierValidationServer...........................
Table D.8 Function Summary for CustomerValidationServer.........................
Table E.1 Interface Description for IAccountDatabase.cveeveiiieniennns
Table E.2 Interface IValidation for the banking domain Example.........................
Table E.3 Interface | AccountManagement for the banking domain Example.......
Table E.4 Interface Description for ITransactionServerManger..............c.oeeee ..
Table E.5 Interface | Customer Management for the banking domain Example......
Table F.1 UMM Specification for AccountDatabaseCaselcccevvviviiinnnnnn.

Xii

106

..... 114

...... 115

Xiii

Table Page
Table F.2 UMM Specification for AccountDatabaseCasel

(Continued from Table F.L) ... e e e e 216
Table F.3 UMM Specification for AccountDatabaseCase2..................cevevennnn... 216
Table F.4 UMM Specification for DeluxeTransactionServerCasel...............ccoeevee. 217
Table F.5 UMM Specification for DeluxeTransactionServerCase2.............o.vevvvenn. 218
Table F.6 UMM Specification for ATMCaSeL.......c.cvvvviieiiiiiiiieiieiieie e e e 219
Table F.7 UMM Specification for CashierTerminalCasel.............c.ccovvievnennnnnn. 220
Table F.8 UMM Specification for CustomerValidationServerCasel...................... 221
Table F.9 UMM Specification for CashierValidationServerCasel 222
Table F.10 UMM Specification for TransactionServerManagerCasel 223
Table F.11 UMM Specification for EconomicTransactionServerCasel.................. 224
Table G.1 QoS Composition Rules for throughput for the Banking Domain

EXAMPLE e 225
Table G.2 QoS Composition Rules for endToEndDelay for the Banking

Domain EXample.......ouuii e e 226
Table G.3 QoS Decomposition Rules for throughput for the Banking Domain

EXAMPl . .. e 227
Table G.4 QoS Decomposition Rules for endToEndDelay for the Banking

Domain EXampPle.t e e 228
Table H.1 QCDM for CriticalUSeCaselc.viiiiiii e it it e e e e 229
Table H.2 QCDM for CriticalUseCasel (Continued from TableH.1) 230
Table H.3 QCDM for CriticalUSeCase?2c.vuviveie it e e e e e 231
Table H.4 QCDM for CriticalUseCase2 (Continued from TableH.3) 232
Table H.5 QCDM for CriticalUseCase3c.oviiiiiii et i e 233
Table H.6 QCDM for CriticalUseCase3 (Continued from Table H.5) 234
Tablel.1 AMDNF at Component Level inthe XML Format...................oooeevenne. 235
Tablel.2 AMDNF at Component Level inthe XML Format (Continued from

1= o = 00) P 236

Table 1.3 AMDNF at Function/Interface Level inthe XML Format....................... 236

Table
Table [.4 AMDNF at Function/Interface Level in the XML Format (Continued

frOM TaADIE 1.3) . e e

Table 1.5 AMDNF at Function/Interface Level in the XML Format (Continued

frOM TaDIE 1.4) ..o e

Table |.6 AMDNF at Function/Interface Level in the XML Format (Continued

frOM TabIE 1.5) . e
Table 1.7 Abstract Component Interaction Model in the XML Format...............

Table 1.8 Architecture Model and Critical Use Case Model Mapping

(Function/Interface Level) inthe XML format...............cooviiiiinnnnnn.

Table 1.9 Mapping of AMDNF from Component Level to Function/Interface

Level inthe XML FOrmatooe e e e e e e

Xiv

Page

237

XV

LIST OF FIGURES

Figure Page
Figure 2.1 Elements of a Generative Domain Model................cooiiiiiiiiiiiii e 8
FIQUre 3. L UA COre ACHVITIES. ... ettt e e e e e e e e e e e et e ae s 21
Figure 3.2 URDS ArChItECIUNE.t et et e et e e e e e e e e e 29
Figure 4.1 Types of Basic Variation Points in Feature Modeling................cooevvennne. 36
Figure 4.2 Feature Diagram of TransactionSubsystem in the Banking Domain

EXAMPIE L. 49
Figure 5.1 UCM for the Banking Domain Example...............oo oo, 72
Figure 5.2 Feature Diagram of UCM for the Banking Domain Example.................. 74
Figure 5.3 Feature Diagram of Key Concepts for the Banking Domain Example......... 75
Figure 5.4 QRM for the Banking Domain Example.............coooo i, 76
Figure 5.5 CUCM for the Banking Domain Example.............cccovvieiiein i vnienen, 76
Figure 5.6 Feature Diagram of AMHF for the Banking Domain Example (Layer 1) 80
Figure 5.7 DFIM for the Banking Domain Example (Layer 1)ccooovviiniinnnnnn. 80
Figure 5.8 Feature Diagram of AMHF for the Banking Domain Example (Layer 2)..... 82
Figure 5.9 DFIM for the Banking Domain Example (Layer 2)..........cccovvveniennnnnn. 82
Figure 5.10 Feature Diagram of AMHF for the Banking Example (Layer 3).............. 84
Figure 5.11 DFIM for the Banking Domain Example (Layer 3).........ccooovivveiiennnnn. 84
Figure 5.12 Feature Diagram of AMHM for the Banking Domain Example............... 85
Figure 5.13 DFIM for the Banking Domain Example............ccccoiviiiii i, 86
Figure 5.14 Component Diagram of BankCasel for the Banking Domain Example...... 91
Figure 5.15 Sequence Diagram of DepositMoney (Case l).......covviiiiivineieinnieniennns 92
Figure 6.1 USGI ArChItECIUIE.ttt e e e e e e e e e e e 109

Figure 6.2 USGI ACtiVity Diagram.........coeie oo e e e e e e 111

XVi

Figure Page
Figure 6.3 USGI ODJECE FIOWc.ie ittt e e e e e e e e e e 112
Figure 6.4 Adapter Model ... e .118
Figure 7.1 Multi-tier Architecture of JZEET'VI AppliCatioNS.........ccvvvieeee e, 137
Figure 7.2 USGI Prototype DeSIgN ettt e e e e e v re e eeeaas 142
Figure 7.3 View Provided by USOf.jSP.o vvv i e e ennnn. 145
Figure 7.4 View Provided by OrderWAthOUtNLP.JSP.......vvvie i, 146
Figure 7.5 View Provided by OrderWAthNLP.jSp......covvv i e 147
Figure 7.6 View Provided By Order . jSp.ovuuiriiiie it e e 148
Figure 7.7 View Provided by AvailableConcreteComponents,sp.........c.cceevenn..... 149
Figure 7.8 View Provided by SelectConcreteComponentS,jSP....ccceevvevvevenienennnnnn 150
Figure 7.9 View Provided by DetermineAdapter TYPES SP .. v vvvvevrevieeneeieeaieenannns 151
Figure 7.10 View Provided by AcquiredAdapters.jsp ... coovvveeieiieiiiii e i 151
Figure 7.11 View Provided by DynamicComponentQOoS SP......cuvveiveiniiniiiineinn 152
Figure 7.12 View Provided by StaticSystemValidation.jspcccvvvvveveiiiennnnns 153
Figure 7.13 View Provided by DynamicSystemValidation.jsp.............ccccevvvvennn 154
Figure 7.14 View Provided by CompoenntDesCription.jSp.......c.vveevevieieiinienennns 154
Figure 7.15 View Provided by ComponentDescription.jsp

(Continued from FIQUre 7.14) ... e e e e e e e ee s 155
Figure 7.16 View Provided by UGDMKBGeNeration.jSP........cvveveverierineeneaneannn 156
Figure 7.17 Flow between jsp Filesin USGI Implementation.................ccccovevene.. 157
Figure 7.18 Class Diagram for UGDMKBGENEratorcc.vvviieiieiieiie e e vennenn 162
Figure 7.19 Class Diagram for OrderProCcessor..........cocvvveeveeinvniiiieiienennnn.... 164
Figure 7.20 Class Diagram for SystemGeneratorovvvvieviivinieiieiieninnnnn.n. 165
Figure 7.21 Class Diagram for URDS ProxXy..........covcvviiiiiiiiiiinincie e e enn o0 168
Figure 7.22 Class Diagram for NLP..........ooiiii e 169
Figure 7.23 Class Diagram for Wrapper GlueGenerator_Proxy............................ 170
Figure 7.24 Schemas for Abstract Component Model inthe UGDM...................... 172
Figure 7.25 Schemas for Other Modelsinthe UGDM ..., 177

Figure 8.1 Example of Generic Modeling Environment................ooviiiiiiiiininnne.

XVii

Figure Page
Figure B.1 Component Diagram of BankCasel for the Banking Domain Example..... 195
Figure B.2 Component Diagram of BankCase2 for the Banking Domain Example..... 195
Figure B.3 Component Diagram of BankCase3 for the Banking Domain Example..... 196
Figure B.4 Component Diagram of BankCase4 for the Banking Domain Example..... 196

Figure C.1 Sequence Diagram of ValidateUsers Cashier.............cooiiiiiiiiiineinn 197
Figure C.2 Sequence Diagram of ValidateUsers Customer..............ccevvvvvveennnn... 197
Figure C.3 Sequence Diagram of Login-exitAccount_Cashier............coovvveiininnnnn, 198
Figure C.4 Sequence Diagram of Login-exitAccount_Customer...........cc.evvveveenene 198
Figure C.5 Sequence Diagram of DepositMoney (Case 1)cccvvevvevnevneennnn. ... 199
Figure C.6 Sequence Diagram of DepositMoney (CaSe2)ccvvvvveiveiieineeneaneannn 199
Figure C.7 Sequence Diagram of DepositMoney (Case 3)cvvvvvvveiveineinnieaneennn, 200
Figure C.8 Sequence Diagram of DepositMoney (Case4)ovvvvviveiieineineiinaneann 200
Figure C.9 Sequence Diagram of WithdrawMoney (Case1)........c.ovveiiiiiiinninnnnn 201
Figure C.10 Sequence Diagram of WithdrawMoney (Case 2)..........cccevvvvevieinennnnnns 202
Figure C.11 Sequence Diagram of WithdrawMoney (Case 3).......ccvvvveeveneennvennnn. 202
Figure C.12 Sequence Diagram of WithdrawMoney (Case4).......c.c.ovvvviviiienvennen. 203
Figure C.13 Sequence Diagram of TransferMoney (Case 1).......c.coovvveiieiiiiinnnnnn 203
Figure C.14 Sequence Diagram of TransferMoney (Case2).......ccoovvvveiviiinnennnnnn 204
Figure C.15 Sequence Diagram of TransferMoney (Case 3).......ccvvevvienveniinnennnnnn 204
Figure C.16 Sequence Diagram of TransferMoney (CaSe4).......covvvvvienieiiiniennnnnn 205
Figure C.17 Sequence Diagram of OpenAccount (CaSe 1)covvvviviieineiieineennnnns 206
Figure C.18 Sequence Diagram of OpenAccount (CBSE2)vvvvvrieriieiieieineenannns 206
Figure C.19 Sequence Diagram of CloseAccount (CaSE 1)vvvvvvieineineaneenniennnn. 206

Figure C.20 Sequence Diagram of CloSeACCOUNt (CBSE2)vvvvvieiieiiiaie e iennen, 207

XViii

ABSTRACT

Huang, Zhisheng. M.S., Purdue University, May 2003. The UniFrame System-Level
Generative Programming Framework. Major Professors: Dr. Rajeev Rae and Dr.
Andrew Olson.

Current and future distributed computing systems (DCS) will certainly require
combining heterogeneous software components that are geographically dispersed so that
their realizations not only meet the functional requirements, but also satisfy the non-
functional criteria such as the desired quality of service (QoS). The UniFrame Approach
(UA) incorporates the concepts of a meta-component model, generative programming
and QoS, to achieve a semi-automatic software development for DCS. It permits a large
degree of component reuse and a seamless interoperation while creating QoS-aware DCS.
UA has two levels, the component level and the system level. This thesis presents the
UniFrame System-Level Generative Programming Framework (USGPF). The proposed
USGPF addresses the following issues. 1) a promising shift in the paradigm of
developing DCS from single systems to families of systems; and 2) a framework at the
system level for developing QoS-aware DCS. The USGPF consists of three parts: 1) the
UniFrame Generative Domain Model (UGDM), which captures the common and variable
properties of a DCS family; 2) the UniFrame UGDM Development Process (UGDP),
which is a use-case driven, architecture-centric, iterative and incremental process to
create aUGDM for aDCS family; and 3) the UniFrame System Generation Infrastructure
(USGI), which has a built-in support for the QoS validation to assist in the creation of
QoS-aware DCS. A prototype is designed and implemented to validate the proposed
USGPF. The results of applying this approach in the semi-automatic construction of
simple DCS from a banking domain are promising and demonstrate the effectiveness of

this research.

1. INTRODUCTION

The software development has been steadily evolving during the past few
decades. There has been a constant endeavor to bring the software industry on par with its
more mature peers like the hardware industry. The emergence of the component-based
software development (CBSD) and product line practice (PLP) are concrete steps in this
direction.

For many years, software systems were built individualy for specific purposes.
With the advent of Object-Oriented Programming the concept of code reuse became a
highly popular and cost-effective programming technique. The CBSD takes this step
further by developing the entire software systems from appropriate commercial-off-the-
shelf (COTS) software components. Szyperski [SZY 99] defines a software component as
a unit of composition with contractually specified interfaces and explicit context
dependencies. At the same time, with the advent of high speed networks and the growing
popularity and availability of the Internet, the paradigm in software development is
shifting towards distributed computing. CBSD has been a growing trend in the
development of software solutions for distributed computing systems (DCS). In recent
years, the software development has also shifted from the development of a single system
to the development of a family of systems. Generative programming [CZAOQ] is the
technique for developing such system families. The product line practice (PLP) initiative
[SEI02] launched by the Software Engineering Institute (SEI), Carnegie Mellon
University, is an attempt to facilitate this transition. The quick advances in the software
development not only open a lot of opportunities but also pose enormous challenges,
especidly for the development of DCS. This thesis tries to address some of these
challenges.

1.1 Problem Definition and Motivation

As distributed computing becomes more and more crucia for the success of
today’s enterprises, there is an increasing need to develop software for DCS in an
effective and efficient way.

However, many challenges arise during the application of the CBSD to DCS.
Some of these challenges are an effect of the presence of multiple component models.
Currently, different component models have been proposed, such as Java™ Remote
Method Invocation (RMI) [ORF98], Common Object Request Broker Architecture
(CORBA™) [OMG99, ORF98, SEI96], Distributed Component Object Model
(DCOM™) [MS98], and .NET [NETO3]. There are difficulties in bridging the
components belonging to different models, thus reducing the degree of component reuse.
How to seamlessly and effectively create DCS from heterogeneous distributed software
components based on these different models is a challenge that is currently being
addressed by the research community.

Another challenging issue is regarding the quality of service (QoS) of components
or of DCS generated from components. The ISO defines QoS as the totality of features
and characteristics of a product or a service that bear on its ability to satisfy stated or
implied needs [1SO86]. In order for a development approach to generate DCS with
predictable quality, the approach should have a built-in support for the QoS. However,
currently there are no widely accepted frameworks that incorporate QoS as an inherent
part of DCS development. This can lead to inconsistencies and irregularities in the quality
of DCS. This calls for a concrete framework which incorporates the QoS as an inherent
part of DCS development process and offers objective means to quantify, verify, validate
and specify the QoS of DCS.

The use of components to develop software for DCS is consistent with the notions
of generative programming and the product line practice (PLP). However, despite the
advances in the software development and the notion of generative programming, alot of
distributed computing systems are ill designed and built as single systems. This
paradigm of single system development has the problems of large investment, long
development cycles, difficulties in the system integration, and a lack of predictable

quality [COHOQ]. One reason of the delay in the application of the generative
programming to the distributed computing is due to the inherent complexity of DCS.
Another reason is that there is no well-defined process for creating DCS in such away to
meet the increasing demand of more reliable DCS. The existing development processes
lack the built-in QoS support that is necessary for creating QoS-aware DCS. Hence, it is
utmost necessary to propose a development process that will incorporate these features.

The recent shift in the focus of Object Management Group (OMG) to the Model
Driven Architecture (MDA) [OMGO01] is arecognition that the bridging of heterogeneous
software components based on different component models requires the standardization
not only of the infrastructure but also of the business and component meta-models. With
MDA, the development of DCS focuses first on the functionality and behavior,
undistorted by idiosyncrasies of the technology or technologies in which it will be
implemented. Thus, MDA divorces implementation details from the business functions.
So, it is not necessary to repeat the process of modeling an application or system's
functionality and its behavior each time a new technology is created. With MDA, the
functionality and the behavior are modeled once, and the mapping from a platform
independent model (PIM) to a platform dependent model (PSM) isimplemented by tools,
easing the task of supporting new technologies.

Web Services [WEBO2] are viewed as another possible solution to the problem of
bridging diverse heterogeneous distributed component models. Mayo [MAY 02] describes
Web Services as a standards-based software technology that lets programmers and
integrators combine existing and new systems or applications in new ways over the
Internet, within a company’ s boundaries, or across many companies. Web Services alow
interoperability between the software written in different programming languages,
developed by different vendors, or running on different Operating Systems or platforms.
Thus, Web Services provides the flexibility with respect to the interoperability, reuse and
development of applications in a distributed environment.

However, both MDA and Web Services do not take into account the QoS of
components and/or systems. They also do not define the process with a built-in QoS
support to create a DCS family. The Unified MetaComponent Model Framework

(UniFrame) research [RAJOO, RAJO1, RAJOZ] is another attempt which aims to address
all above listed chalenges. The UniFrame Approach (UA), a key constituent of the
UniFrame, tries to unify the existing and emerging distributed component models under
a common meta-model, the Unified Meta-component Model (UMM). It has the following
key concepts: a) a meta-component model (the Unified Meta Model — UMM [RAJOQ]),
with an associated hierarchical setup for indicating the contracts and constraints of the
components, b) an integration of the QoS at the individual component and distributed
application levels, c) the validation and assurance of the QoS, based on the concept of
event grammars, and €) generative rules with formal specifications to assemble a DCS
from an ensemble of components out of available component choices. Chapter 3 provides
amore detailed overview of this approach.

The application of UA to create DCS has two levels [RAJ0O1]: 1) component level
- in this level, different components are created by developers, tested and verified from
the point of view of QoS, and then deployed on the network; 2) system level - this level
concentrates on creating a generative domain model (GDM) and automatically or semi-
automatically generating DCS by assembling a collection of heterogeneous distributed
software components based on the GDM. The generative programming technigues can be
applied at both levels of the UA. This thesis focuses on applying the generative

programming techniques at the system level in the context of UA.

1.2 Objectives
Specifically, this thesis aims at proposing the UniFrame System-Level Generative

Programming Framework (USGPF) to address the challenges stated in the previous
section. The overall objectives of the USGPF are:

e To propose the UniFrame Generative Domain Model (UGDM) to capture the
common and variable properties of a DCS family with QoS concerns in the
solution space. The generative domain model (GDM) for a DCS family differs
significantly from a model for a standalone program. The UGDM should be able
to capture many aspects of DCS in order to assist the developing of more reliable

DCS or QoS-aware DCS. The UGDM should take into account various aspects of
DCS, like system architecture, component interactions, communication patterns,
QoS composition and decomposition, and event grammar.

To create the UniFrame UGDM Development Process (UGDP) for the
development of a DCS family by incorporating generative programming
techniques into the UA at the system level. The UGDP should be an effective
process for developing UGDM for any target domain. It should have a built-in
support to incorporate the QoS into UGDM in order to develop quality-oriented
and time-to-market DCS with lower development and maintenance costs.

To create the UniFrame System Generation Infrastructure (USGI) to assist in the
generation of QoS-aware DCS during the phase of application engineering based
on the UGDM. The proposed USGI should have aflexible architecture and should
be platform independent. The USGI replaces the manual search for, and
adaptation and assembly of, heterogeneous and distributed components with
automation. It should support the generation of DCS automatically to the extent
feasible and should have the built-in support for the system QoS validation.

1.3 Contributions

The contributions of thisthesis are:

Definition of the UniFrame Generative Domain Model (UGDM). The UGDM has
an inherent consideration of the QoS requirements to assist the need of developing
QoS-aware DCS. The proposed UGDM consists of a set of models to represent
different aspects of a DCS family to assist the automatic system generation and
QoS validation.

Definition of the UniFrame Domain Specific Language (UDSL) to document
various modelsin the UGDM in an informal fashion.

Creation of the UniFrame UGDM Development Process (UGDP) to formulate a
UGDM in assisting the development of a DCS family. The UGDP is a use-case

driven, architecture-centric and iterative process. It has a built-in support to
integrate QoS into the UGDM.

e Deveopment of a platform independent UniFrame System Generation
Infrastructure (USGI) for efficiently generating QoS-aware DCS by seamlessly
integrating heterogeneous distributed software components.

e Validation of the above mentioned objectives by a detailed case study involving

an example from the banking domain.

1.4 Thesis Organization

This thesis is organized into eight chapters. Chapter 1 provides an introduction
with the problem definition and motivation, objectives, contributions and thesis outline.
Chapter 2 presents the related work on the generative programming, domain engineering
and application engineering. Chapter 3 provides an overview of the UniFrame research
project, which is the context for this thesis. This chapter also outlines the UniFrame
System-Level Generative Programming Framework (USGPF). Chapter 4-6 describes the
USGPF in detail. USGPF consists of three parts: UniFrame Generative Domain Model
(UGDM), UniFrame UGDM Development Process (UGDP) and UniFrame System
Generation Infrastructure (USGI). Chapter 4-6 describes these three parts respectively.
Chapter 7 describes the design and implementation of a prototype for the USGI. An
example from the banking domain, which serves as the case study for the USGPF, is
developed and demonstrated throughout Chapter 4, Chapter 5 and Chapter 7. Chapter 8
provides a discussion of the features of the USGPF, possible enhancement for the USGPF

as future work and a summary of thisthesis.

2. BACKGROUND AND RELATED WORK

In the previous chapter a brief introduction is presented, along with the problem
definition, objectives and contributions of this thesis. This chapter provides an overview
of the background and the related work that has influenced the development of the
USGPF.

2.1 Generative Programming

The generative programming is concerned with bringing the automation to the
software development. The goa of the generative programming is to be able to
automatically generate systems from a system family based on given specifications. A
system family is a group of systems that can be built from a common set of assets. The
achievement of this goal requires the development of amodel of the system family, away
to specify system requirements, the availability of components from which the system
can be assembled, and means of mapping the problem specification onto the required
components (out of the available ones) to generate the system using a configuration
generator (or system generator).

In [CZAOQ], the generative programming paradigm is formally defined as:
“Generative Programming is about manufacturing software products out of components
in an automated way. It requires two steps. @ a design and implementation of a
generative domain model, representing a family of software systems (development for
reuse). This model includes aso a domain-specific software generator; b) given a
particular requirements specification, a highly customized and optimized end-product can
be automatically manufactured from implementation components by means of generation

rules (development with reuse)”. The methods presented in [CZAQQ] can be applied both

“in the small”, i.e, at the level of classes and procedures and “in the large’, to develop

families of large systems.

Solution Space
Configuration Knowledge > Elementary
Emtg(?rrr?aifpaggﬁc > lllegal feature combinations components
» > Default settings > Maximum
concepts and > Default dependencies combinability
> Features » Construction rules > Minimum
> Optimizations redundancy
Maximum reuse

Figure 2.1 Elements of a Generative Domain Model
(from [CZAQ0, CZA99])

The generative programming requires the development of a generative domain
model (GDM). This model consists of a problem space, a solution space, and the
necessary configuration knowledge to map them together (see Figure 2.1). The problem
space consists of application concepts and features that an application programmer can
use to express the requirements for generating systems from a system family. This
problem space can be explored using techniques from the domain engineering. The
solution space is made up of the component implementations in all of their potential
combinations. The configuration knowledge takes into account considerations such as
illegal feature combinations, default settings, default dependencies, construction rules,
and optimization rules. Configuration generators (or system generators, often referred to
simply as generators) are created to implement this knowledge. A configuration generator
is responsible for checking to see if the system can be built, completing the specification
by computing defaults, and assembling the implementation components. An important
concept to keep in mind when designing the problem space is that application
programmers should only be required to specify as much information as is necessary to
identify potentially appropriate components from the generative library. The

programmers should be alowed to specify details or elect to supply some of his own
implementations for specific functionalitiesif desired.

An important advantage of the separation between the problem space and solution
space is the possibility to evolve both spaces in a relatively independent way. In
particular, new components can be added to the solution space or the existing ones can be
improved. As long as the new components or the improved components can cover the
functionality delineated by the problem space, the existing client code can remain
unaltered. Thisis so because the client code orders systems and components by means of
the language of the problem space, and the generator takes care of the mapping of the
problem specifications onto the configurations of the new components. Thus, adding new
components only requires modifying the generator. However, this task may not be trivial.
In the UniFrame Approach, which will be reviewed in detail in next chapter, with the
service of the active component management, which dynamically and actively discovers
and registers components deployed over the network, components are separated from the
generator. Thus, when new components are deployed on the network, no modification is
needed for the system generator.

The main steps necessary in the generative programming are identified in
[CZAO00]:

e Domain scoping

e Feature and concept modeling

e Designing a common architecture and identifying implementation
concepts

e Specifying domain specific notations for ordering systems

e Specifying the configuration knowledge

e Implementing the components

e Implementing the domain specific notations

e Implementing the configuration knowledge using generators

These steps specify what needs to be done when applying the generative
programming, but not in what order. It is best to perform these steps iteratively and

10

incrementally. These steps are reflected in the USGPF and the meanings of each step will
be discussed in the context of USGPF from Chapter 4 to Chapter 7.

2.2 Product Line Practice

In the component-based software development (CBSD), the domain engineering
phase and the component engineering phase covers the development of reusable assets
(including system architecture, component code, etc) and a production plan for producing
concrete systems from these assets. In the phase of application engineering concrete
systems are generated from these assets. However, in order to successfully introduce and
run CBSD in an organization, alot of issues have to be addressed. In particular, there are
management and organizational issues concerning the process and the feedback between
different phases. There are concerns about how to successfully transit to a system-family-
oriented development, how to launch and institutionalize it and how to manage the
associated risks. In addition, in order to determine what features are needed now and in
the future, issues like the market analysis and the technology forecasting also need to be
addressed. Furthermore, supports are needed to decide whether to develop components
in-house or to purchase Commercia Off-The-Shelf (COTS) and Commercia Off-The-
Net (COTN) components. Methods to evaluate and test architectures, components,
generic and generative models, are also needed. These issues go beyond the scope of
current component-based software engineering methods [CZA0Q].

The Product Line Practice (PLP) is directly connected with the generative
programming technique. In 1997, the PLP initiative [SEIO2] was launched by the
Software Engineering Institute (SEI), Carnegie Mellon University, to address the
different issues discussed in the previous paragraph. The intention was to help facilitate
and accelerate the transition from the traditional single system development to sound
software engineering practices using a product line approach. In PLP, a software product
line is defined to be a set of software-intensive systems sharing a common, managed set
of features that satisfy specific needs of a selected market or mission, and that are
developed from a common set of core assets in a prescribed way [CLEOL1, COHOO0]. A

11

software product line has the same meaning as a system family in the generdtive
progranming. The SEI's PLP Framework is the first forma attempt to codify the
comprehensive information about successful product lines.

The idea behind the PLP framework is to identify the different issues and
practices relevant to establishing and running successful product lines in an organization.
More information can be found on the PLP Framework website [SEI02a]. The framework
is documented in a living guidebook, which addresses the different practice areas and
contains references to various approaches, methods, case studies, and other materials.
The guidebook is being constantly updated based on a series of workshops run by SEI. It
isavailable at www.sei.cmu.edu/plp/.

2.3 Domain Engineering M ethods and Technologies

The previous two sections briefly described the generative programming
technique for creating a system family and the PLP framework for helping the transition
in this direction. This section provides a brief overview about prominent domain
engineering methods and technologies that has influenced the development of USGPF.
Typicaly, proposals for large scale software reuse usually introduce a concept of a
software component, along with a design and implementational framework, which allows
for component compositions. All the methods and technologies discussed in this section
reflect this concept and use generative programming techniques. However, none of them
specifically targets DCS and none of them address the heterogeneity in the distributed
computing environment. Furthermore, none of them addresses the QoS issue. The
effective solution to address these issues in the USGPF distinguishes it from these

domain engineering methods and technol ogies.

2.3.1 DEMRAL
Domain Engineering Method for Reusable Algorithmic Libraries (DEMRAL)
[CZA99a, CZAOQ] is a specialized domain engineering method aimed at creating a

12

system family in order to maximize component reuse. It describes a complete analysis
and design method for developing reusable libraries in algorithmic areas such as image

processing, numerical computing, and containers.

Table 2.1 Outline of DEMRAL (from [CZA99a, CZA0Q]

1. Domain Analysis
1.1. Domain Definition
1.1.1. Goal and Stakeholder Analysis
1.1.2. Domain Scoping and Context Analysis
1.1.2.1. Analysis of application areas and existing systems (i.e.
exemplars)
1.1.2.2. Identification of domain features
1.1.2.3. Identification of relationshipsto other domains
1.2 Domain Modeling
1.2.1. Identification of key concepts
1.2.2. Feature modeling of the key concepts (i.e. identification of
commonalities, variabilities, and feature dependencies/interactions)
2. Domain Design
2.1. ldentification of the overall implementation architecture
2.2. ldentification and specification of domain-specific languages
2.3. Specification of the Configuration Knowledge
3. Domain Implementation (implementation of the domain-specific languages, language
tranglators, and i mplementation components)

The development process of DEMRAL is an iterative and incremental one. The
procedure of DEMRAL is outlined in Table 2.1.This method closely follows the widely
accepted division of the domain engineering to divide the procedure into three phases:
domain analysis, domain design and domain implementation. It was created while
applying the Organization Domain Modeling (ODM) in the development of the matrix
computation library [CZAO0Q]. Although this method is not intended for generating DCS
families, the procedure outline in Table 2.1 can act as a good guideline for developing a
method for generating DCS families and is reflected in the USGPF.

The domain analysis in DEMRAL involves the domain definition and the domain
modeling. The purpose of the domain definition is to establish the domain scope based on
the analysis of stakeholders, who have interests in the ongoing project, their goals and

existing systems. The purpose of the domain modeling is to model the contents of the

13

domain by finding the relevant domain concepts and modeling their features. The domain
modeling involves identification of the key concepts and the feature modeling of these
concepts. By definition, DEMRAL focuses on the domains whose main concept
categories are ADTs (Abstract Data Type) and algorithms. An ADT defines a whole
family of data types. The feature modeling of the key concepts is to develop feature
models of the concepts in the domain to define the common and variable features of the
concept instances and the dependencies between variable features. The purpose of the
domain design isto develop alibrary architecture, identify implementational components,
specify domain specific languages (DSLs) constituting the application programming
interface to the library, and specify the translation of the DSLs into the target architecture.
The domain design builds on the results of the domain modeling and involves the
following activities. scope the domain model for the implementation, identify packages,
develop target architectures and identify the implementational components, identify the
DSLs, identify interactions between DSLs and specify DSLs and their trandation into
target architectures. During the domain implementation phase, different implementational
techniques, such as template meta-programming, preprocessor, compiler, and intentional

programming, etc, are applied to implement different parts of an algorithmic library.

2.3.2 Draco

Draco [NEI80] began as the PhD work of James M. Neighbors. It has been used
and has evolved since 1980. It is now being used to generate commercial software by
Bayfront Technologies, Inc [BAY03]. Draco defines each modeling domain (such as a
network domain or a database domain) by a special purpose programming language of
abstractions and their operations that are specific to that domain. A modeling domainis a
pure abstraction of the knowledge about the domain and makes no a priori commitment
about how any operator or an abstraction in that domain will actually be implemented.
The semantics of these domain specific languages are provided by a set of refinements
that map the abstractions and their operations in a given domain into the abstractions and

operations of other (conceptually lower and more primitive) domains. For any specific

14

expression of operators and operands, there may be severa alternative potential
refinements that might apply based upon the context in which the refinement is occurring.

The basic steps in the production of a specific system using a Draco supported
domain-specific high-level language is briefly described here (details can be found in
Draco 1.2 Users Manual [NEIOQ3]). For a problem domain that is understood well enough
to define a domain language suitable for comfortably and easily describing systems in
this domain, define the domain language and describe the domain with this language in
precise meaning, provide relations among the objects and operations of the domain, and
prepare a description of the meaning of the operations and objects in the domain. Specify
components for the objects and operations in the domain. These components are formed
into libraries. A component is a set of refinements each capable of implementing a
domain object or an operation under certain stated conditions while satisfying certain
implementation assertions. A new system can be described in the domain language and
then turned into an internal form, which is used during the transformation and the
refinement. The basic operation during the transformation and the refinement is the
selection of an appropriate set of software components to implement the operations and
objects in the domain which are used in the problem statement. These components then
are speciaized by a program transformation to the problem under consideration.

In summary, three themes dominate the way Draco operates: the use of specia-
purpose high-level languages for the domains or problem areas in which many similar
systems are needed; the use of software components to implement problems stated in
these languages in aflexible and reliable way; and the use of program transformations to
tailor the components to their use in a specific context. The theory behind its operationsis
described in detail in Neighbors' PhD thesis [NEI80]. Although Draco is not designed for
creating DCS, these three themes are not tied to creating standalone programs. In
USGPF, these three themes are adopted and modified specifically for the purpose of
generating DCS. USGPF a so addresses issues that are not addressed by Draco, such as

QoS, communication patterns and heterogeneity, etc.

15

2.3.2 GenVoca

GenVoca [BAT92, BAT95, BAT96, BATO0Z2] is the distillation of the designs of
two independently-conceived software system generators for the domains of databases
and communications protocols. It is a tool for defining code constructs at a higher level
than program code. It is a domain-independent model for defining scalable families of
hierarchical systems as compositions of reusable components. The idea behind GenVoca
is to compose objects out of a series of layers. Each layer handles a specific aspect of the
object. Layers can be mixed and matched in aflexible way.

The distinguished features of GenVoca are reams, components and type
equations. GenVoca defines standardized interfaces called realms which may contain
multiple classes and their methods. GenVoca components are modules that export a
realm interface and encapsulate the implementation of a single design feature. GenVoca
components may also import realm interfaces allowing components to be parameterized
by other components. Such compositions are specified in type equations. Each
component implements a large scale refinement; a composition of components represents
a composition of such refinements. GenV oca provides techniques to decompose existing
applications into reusable and composable components.

GenVoca requires the definition of standardized realm interfaces as its starting
point. This is usually preceded by a domain analysis which reveas what standardized
interfaces should be supported. Each interface defined represents a subsystem abstraction
whose implementations are specified by families of subsystems (type equations), called
an application family. More specific and detailed information about GenVoca can be
found from the website: http://www.cs.utexas.edu/users/schwartz/.

In the USGPF, a set of interfaces are also created and standardized for a DCS
domain, and the components need to specify the interfaces it requires and provides. The
system architectures in the USGF also adopt layered architecture. Components in the
USGPF are autonomous entities; however, components in GenVoca are not. GenVocais
more suitable for modeling and creating standalone programs, but USGPF is designed for
DCS. The GenVoca is a domain independent model; however, the application of
GenVoca to a specific domain creates a domain dependent generator. Any refinement of

16

the domain architecture or the creation of new components requires the modification of
the generator. The modification is error prone. In contrast, the proposed USGPF is
domain independent and avoids this hassle. The USGPF also tries to address issues that
are not considered in GevVoca, for example, QoS of components and systems,

integration of heterogeneous components, etc.

This chapter provides an overview of the background and the related work that has
influenced the development of the USGPF. In next chapter, an overview on the

UniFrame, which is the context for the proposed USGPF, is presented.

17

3. OVERVIEW OF THE UNIFRAME

Chapter 2 provided an overview of the background and related work for this
thesis. This chapter describes the Unified Meta-component Model Framework
(UniFrame) and how it can be used for developing a DCS from a DCS family by
integrating reusabl e heterogeneous and geographically distributed software components.

The UniFrame project is an attempt towards the unification of the existing and
emerging distributed component models under a common meta-model for the purpose of
enabling discovery, interoperability, and collaboration of components via generative
programming techniques [RAJO0, RAJ01, RAJ02]. It specifies a framework for the
component developers to create, test and verify Quality of Service (QoS) and deploy the
components, and for the application programmers to select and generate a software
solution for the DCS under consideration in an automatic or semi-automatic fashion
(automation to the maximum possibility). The UniFrame consists of the Unified Meta-
component Model (UMM) and the UniFrame Approach (UA). The Unified Meta-
Component Model (UMM) proposed in [RAJOO] is the central theme of the UniFrame.
UA is a component based software engineering process based on UMM for creating a
DCS out of available heterogeneous and distributed software components.

This chapter provides an overview of the UMM and the UA. It also describes the
implementations of various features of the UMM, including the UMM specification, the
UniFrame QoS Framework (UQOS) and the UniFrame Resource Discovery Service
(URDS). The last part of this chapter presents a brief discussion of the UniFrame System-
Level Generative Programming Framework (USGPF), which is a framework for realizing
UA at the system level. The USGPF is the theme of this thesis. The detailed descriptions
about it are presented in the chaptersfrom 4 to 7.

18

3.1 The Unified Meta-Component Model (UMM)
The recent shift in the focus of Object Management Group (OMG) to Model

Driven Architecture (MDA) [OMGO01] is a recognition that bridging components to
create DCS requires standardization of not only the infrastructure but also Business and
Component Models. The UMM provides an opportunity to bridge gaps that currently
exist in the standards arena and provides the theoretical foundation for the UniFrame. The
core parts of the UMM are: components, service and service guarantees, and
infrastructure. A brief discussion of UMM is provided below. A detailed description of
the UMM isavailable in [RAJOO, RAJO1, RAJOZ].

3.1.1 Components
The UniFrame is a component-based framework. Hence, components are the
building blocks of any system built by using the UniFrame. In UniFrame, components are
autonomous entities with non-uniform implementations. This means that the components
may adhere to different distributed computing models and there is no notion of either a
centralized controller or a unified implementational framework. Every component has a
state, an identity, a behavior. Thus, all components have well-defined interfaces and
private implementations. In addition, each component in the UMM has three aspects:
computational aspect, cooperative aspect and auxiliary aspect.
e Computational Aspect
The computational aspect reflects the task(s) carried out by each component. It is a
form of introspection by which every component describes its services to other
components. It in turn depends upon: a) the objective(s) of the task, b) the techniques
used to achieve these objectives, and c) the precise specification of the functionality
offered by the component. The computational aspect of a component is described by
its inherent attributes, which consists of simple textual information containing the
book-keeping information of a component, and functional attributes, which consists
of a formal and precise description of the computation, its associated contracts and

the levels of service that the component offers.

19

e Cooperative Aspect
The cooperative aspect of a component indicates its interactions with other
components. The cooperative aspect of a component may contain: 1) Pre-processing
collaborators - other components on which this component depends upon; and 2)
Postprocessing collaborators - other components that may depend on this component.
e Auxiliary Aspect
In addition to computation and cooperation, mobility, security, and fault tolerance are
necessary features of a DCS. The auxiliary aspect of a component addresses these
features.

3.1.2 Service and Service Guarantees

Services in UniFrame could be a computational effort or an access to underlying
resources. In DCS, it is natural to have several choices for obtaining a specific service.
Thus, each component, in addition to indicating its functionality, must be able to specify
and guarantee the quality of the service offered. The quality of the service offered by a
component plays an important role in whether or not the component is selected for a
given system. It is an indication of a component’s confidence in its ability to carry out a
specified service in spite of the constantly changing execution environment and a
possibility of partial failures. The QoS offered by each component is dependent upon the
computation performed, algorithm used, expected computational effort and resources

required, the cost of each service, and the dynamics of supply and demand.

3.1.3 Infrastructure
The headhunter [SIR02] and the Internet Component Broker (ICB) [RAJOZ2,
SIR02] constitute the infrastructure of the UMM and allow the creation of distributed
computing systems by a seamless integration of components adhering to different

component models.

20

e Headhunter
The headhunter is responsible for searching and managing heterogeneous and
geographically distributed components. The head-hunters are analogous to binders or
traders in other models. The difference is that the trader is passive, thus, the
components are responsible for registering themselves with the trader. On the other
hand, the head-hunter actively discovers new components and attempts to register
them with itself. A component may be registered with multiple head-hunters. It is also
possible for multiple head-hunters to co-operate with each other in order to discover a
larger number of components.

e ICB
The ICB is intended to act as a mediator between two components adhering to
different component models. An ICB itself is a component defined under the UMM.
It utilizes adapter technology to provide tranglation capabilities between specific
component architectures. The adapter components achieve interoperability through
wrap and glue technology [LUQO1]. The ICB is analogous to an Object Request
Broker (ORB). The ORB provides the facilities for objects written in different
programming languages to communicate, while the ICB provides the capability to
generate glues and wrappers to allow components belonging to different component

modedl s to communicate.

3.2 The UniFrame Approach (UA)
The UniFrame Approach (UA) is a UMM-based technique for the automatic
production of a DCS from a DCS family. The creation of a software redlization of a DCS

using UA has two levels. a) the component level - components are designed and
developed with UMM specifications (which are informal in nature [RAJO1]), tested and
validated against appropriate QoS, then deployed on the network, and b) the system level
— a semi-automatic or automatic generation of a specific DCS product from a DCS
family. The concepts of the generative programming are applied at both levelsin the UA.
This thesis describes the application of generative programming at the system level.

21

Generative Component
Domain Engineering

Engineering —>

P

Generative A_ctiv_e
Application 4---P) Distributed
Engineering Component
Management

<4—> |[teration and feedback
<« ---9 Queryandsearch

Figure 3.1 UA Core Activities

The UA has four core activities to build a DCS as shown in Figure 3.1 [HUAOQ2].
These are: generative domain engineering, component engineering, generative
application engineering, and active distributed component management. The
development process is iterative and there are feedbacks during the first three activities.
These four core activities span both the levels of UA: the component level and the system
level. Generative domain engineering and component engineering correspond to the
domain engineering in [CZA0Q], aiming at maximizing the reuse of both the components
and the software architecture. Generative domain engineering and generative application
engineering are system-level activities and the component engineering is at the

component level. Active distributed component engineering isinvolved at both levels.

3.2.1 Generative Domain Engineering
The generative domain engineering consists of activities for identifying
commonalities and variations of the system architecture of a DCS family to create a
GDM. The GDM includes a set of abstract components as the guidelines for developing
reusable concrete components during component engineering phase. Each abstract

component represents one component type and is defined by a UMM specification. This

22

specification is natural language-like and includes both the functiona and nonfunctional
(such as expected QoS properties) aspects of a component [RAJO1]. This specification is
then refined into a formal specification, based upon the theory of Two-Level Grammar
(TLG) [BRY02] and natural language specifications [BRY 00]. This activity is the theme
of the UniFrame UGDM Development Process (UGDP), which is presented in detail in
Chapter 5.

3.2.2 Component Engineering
The component engineering phase begins with a natural language-like
specification of a component. During this phase, the abstract components are mapped to
different component models to create concrete components. The concrete components are
tested and validated against the appropriate QoS according to the QoS Catalog [BRAO1].
Then these components are deployed over the network to be discovered by the
headhunters. It is worthwhile to note that the generative programming is also carried out

during the component engineering phase.

3.2.3 Active Distributed Component Management
The active distributed component management is the UniFrame resource
discovery service (URDS) [SIR02], which is described in the section 3.5. The URDS
offers the dynamic discovery and management of the heterogeneous software
components and assists in the finding of the required components during the phase of the

gener ative application engineering.

3.2.4 Generative Application Engineering
The generative application engineering is the process of building a DCS from a
DCS family based on a GDM. This phase can be outlined in three steps: @) determining

23

the target system and its architecture instance according to the system specification; b)
searching for concrete components for the target system via the headhunters;, and c)
assembling and testing the DCS with the QoS validation. The GDM is used to guide this
entire process. The validation of the QoS requirements is carried out both by QoS
composition rules [SUN02, SUNO3], which specify how the system QoS or subsystem
QoS can be composed from the QoS of its parts, and by the event grammars [AUG95,
AUG97], which are used as the basis for the system behavior models to trace events like
executing a statement or calling a procedure. This phase is the theme of the UniFrame
System Generation Infrastructure (USGI), which is presented in detail in Chapter 6.

3.3 UMM Specification

The component developers who wish to adopt the UniFrame should adhere to the

UMM specification for a component and specify the parameters in the UMM
specification during the component development and deployment phase. It is the
responsibility of the component developer to ensure that his components meet the UMM
specifications. Table 3.1 provides the UMM specification template for a component. The
remaining of this section provides descriptions for each entry in Table 3.1.

Table 3.1 UMM Specification Template

UMM Specification

1. Component Name: <component name>
2. Component Subcase: <component subcase name>
3. Domain Name: <domain name>
4. System Name: < system family name>
5. Informal Description: <natural language description>
6. Computational Attributes:
6.1 Inherent Attributes:
6.1.1 id: <internet address for a concrete component, or N/A for an abstract
component>
6.1.2. Version: <version expression>
6.1.3 Author: <developer name for a concrete component, or N/A for an
abstract component>
6.1.4 Date: <deployment time for a concrete component, or N/A for an abstract
component>

(Continued in Table 3.2)

Table 3.2 UMM Specification Template (Continued from Table 3.1)

(Continued from Table 3.1)
6.1.5 Validity: <valid time for a concrete component, or N/A for an abstract
component>
6.1.6 Atomicity: <Yes/No>
6.1.7 Registration: <the registering headhunter for a concrete component, or
N/A for an abstract component>
6.1.8 Model: <component model for a concrete component, or N/A for an
abstract component>
6.2 Functional Attributes:
6.2.1 Function description: <natural language description of component
functions>
6.2.2 Algorithm: <list of algorithms>
6.2.3 Complexity: <component complexity for a concrete component, or N/A for
an abstract component>
6.2.4 Syntactic Contract
5.2.4.1 Provided Interface: <list of provided interfaces>
5.2.4.2 Required Interface: <list of required interfaces>
6.2.5 Technology: <technology name for a concrete component, or N/A for an
abstract component>
6.2.6 Expected Resources. <expected resources expression, NONE if not
available for a concrete component, or N/A for an abstract
component>
6.2.7 Design Patterns: <list of used design patterns separated by comma, or
NONE>
6.2.8 Known Usage: <list of known usage separated by semicolon, or NONE>
6.2.9 Alias: <list of alias separated by comma, or NONE>
7. Cooperation Attributes:
7.1 Preprocessing Collaborators: <list of preprocessing collaborators separated by
comma or NONE>
7.2 Postprocessing Collaborators: <list of postprocessing collaborators separated by
comma or NONE>
8. Auxiliary Attributes:
8.1 Mobility: <Yes/No>
8.2 Security: <security level >
8.3 Fault tolerance: <fault tolerance level >
9. Quality of Service
9.1 QoS Metrics: <list of QoS Metrics separated by comma for an abstract component,
or list of detailed QoS Metrics separated by semicolon for a
concrete component>
9.2 QoS Levd: <level of QoS>
9.3 Cost: <compensation level >
9.4 Quality Level: <level of quality >

24

Component Name: This entry specifies the name of the component that this UMM

specification is about. The name is used to identify the component.

25

Component Subcase: This entry indicates information related to communication
patterns of functions of the component. The communication patterns reflect the
synchronization aspect of functions and are discussed in Chapter 4 and Chapter 5.
Domain Name: This entry provides the domain scope for the component, for
example, banking domain.
System Name: This entry indicates the system family to which this component
belongsto.
Description: This entry provides an informal description of the services provided by
the component. This information may include unique characteristics of the
component that can not be described in other entries.
Computational Attributes: This entry describes the computational aspect of the
component in term of the following parameters.
0 Inherent Attributes:
= |D: Thisisaunique string consisting of the host name and the port on
which the component is running along with the name with which the
component binds itself to a registry, for example
intrepid.cs.iupui.edu:8080/AccountServer.
= Version: Thisentry indicates the version of the component.
= Author: Thisentry indicates the authors of the component.
= Date: This entry indicates the deployment time for a concrete
component. It is not applicable for an abstract component.
= Validity: Thisentry indicates whether a concrete component isvalid. It
is not applicable for an abstract component.
= Atomicity: This entry indicates whether the component is atomic.
= Registration: This entry indicates to which headhunter the component
registered to. It is not applicable for an abstract component.
= Modd: This entry indicates the component model that the component
adhered to.
o Functional Attributes:

26

= Function Description: This entry provides a description of each of the
functions supported by the component.
= Algorithm: This entry indicates the agorithms utilized by the
component to implement its functionality if the type of the
specification is concrete component. If the specification type is
abstract component, then this entry means the corresponding concrete
components must implement the indicated algorithms, e.g., Quick Sort.
= Complexity: This entry describes the order of complexity of the above
mentioned algorithms implemented by the component.
= Syntactic Contract: This entry provides the computational signature of
the component’s service interface. The interfaces are well defined in
the process of generative domain engineering. Each component must
specify its provided interfaces and required interfaces.
= Technology: This entry indicates the component technology utilized to
implement the component, e.g., J2EE, CORBA, .NET etc.
= Expected Resources. This entry indicates the expected resources for
the component, e.g., CPU, memory.
= Design Patterns: This entry indicates the design patterns employed by
the component.
= Known Usage: This entry indicates the known usages of the
component.
= Alias: Thisentry indicates the alias names for the component.
Cooperation Attributes:
0 Preprocessing Collaborators: This entry indicates other components on which
this component depends upon.
0 Postprocessing Collaborators: This entry indicates other components that may
depend on this component.
Auxiliary Attributes:
0 Mohbility: This entry indicates whether the component is mobile or not.

0 Security: This entry indicates the security level of the component.

27

o0 Fault Tolerance: This entry indicates the fault tolerance level of the

component.
e Quality of Service:

0 QoS Metrics. Each abstract component should list the QoS metrics that should
be provided by the implementation components (concrete components). For a
concrete component, provided information for each QoS metrics includes: 1)
QoS parameter name; 2) type of parameter: static/dynamic; 3) min/max limit.
If the QoS metric is dynamic, also provide information about: 4) environment
values for the min/max ratings; and 5) variation in parameter values according
to environment.

0 QoS Level: A component developer may offer several possible levels of QoS.
Thisentry is not applicable to an abstract component.

o Cost: This entry indicates the compensation level for the component.

0 Quality Level: This entry provides an overal assessment of a concrete

component. It is not applicable to an abstract component.

During the component development and deployment phase, the natural language
specification is converted into a standardized XML-based specification, which can be
automated discovered by the URDS.

3.4 The UniFrame QoS Framework (UQQS)

The concepts of the service and service guarantees are an integral part of every

component in UMM and they also play an important role in the system generation phase
of the UniFrame. The UniFrame QOS (UQOS) framework [BRAO1, BRA0O2, BRAO24d] is
an implementation of the service and service guarantees aspect of the UMM.

In order to utilize the Service and Service guarantees of UMM in a real-world
scenario to assure the QoS of a DCS, following issues have to be addressed: 1) a
framework to objectively quantify the QoS of software components; 2) a standardized

QoS Cataog for reference by software component developers and application engineers;

28

3) a standard approach to incorporate the effect of the environment on the QoS of

software components into the component development process; 4) a standard approach to

incorporate the effect of usage patterns on the QoS of software components into the

component development process; and 5) a QoS specification scheme to specify the QoS

of software components. The UQOS framework consists of four parts to facilitate the

solving of these issues:

The QoS Catalog: This catalog is intended to standardize the notion of quality of
software components. It contains detailed descriptions of QoS parameters of
software components, including the metrics, the evaluation methodologies, the
factors influencing these parameters and the interrelationships among these
parameters. In UMM, every component must specify the quality of service that it
can offer in terms of the QoS parameters, as identified in the QoS Catalog.

The approach for accounting for the effect of the environment on the QoS of
software components. This provides methods to address the effects of diverse
operating environments such as, CPU, memory, operating system and priority
schemes, on the QoS of a software components. It aso suggests how to document
the effect in a software component so that it can be maintained by component
devel opers and referenced by application devel opers.

The approach for accounting for the effect of usage patterns on the QoS of
software components. This consists of an empirica validation of the QoS of the
software components under different usage patterns, such as the pattern of users
and user requests received by components. It also suggests how to document the
effect in a software component so that it can be maintained by component
devel opers and referenced by application devel opers.

The specification of the QoS of software components: The QoS is an integral part
of every software component in the UniFrame. Thus there is a need for a formal
language to specify this non-functional or QoS aspects of any software
component. The specification scheme chosen for the UQOS framework is the
Component Quality Modeling Language (COML) [AAGO1]. CQML is a lexical
language for specifying QoS. It is based on four specification constructs, i.e., QoS

29

characteristics, QoS statements, QoS profiles and QoS categories. CQML meets
the need of the UQOS for a generic and domain independent specification
language, which can seamlessly integrate with object-oriented analysis and
design, can separate the QoS specification from functional specification both
syntactically and semantically, and is compatible with existing interface definition
languages like CORBA IDL.

3.5 The UniFrame Resource Discovery Service (URDS)
This section provides an overview of the UniFrame Discovery Service (URDS)
[SIR02], which is an implementation of the UMM infrastructure. URDS is designed to

provide the infrastructure necessary for discovering and managing a collection of
heterogeneous components for building a DCS. The URDS infrastructure is illustrated in
Figure 3.2. The numbers in the Figure 3.2 indicate the flow of activities in the URDS.
Therest of this section provides a brief description of the components of the URDS.

) 2 Active (Voyager)
7 Registry
Active (ORBY
G Registry

Active (RMI)
(53] Registry

Figure 3.2 URDS Architecture (from [SIR02])

30

Internet Component Broker (ICB)

The ICB has been discussed in 3.1.3. It contains the following: Query Manager (QM),

the Domain Security Manager (DSM), Link Manager (LM) and Adapter Manager

(AM). The ICB acts as an all-pervasive component broker in an interconnected

environment. The communication infrastructure necessary to identify and locate

services, enforce domain security and handle mediation between heterogeneous
components are al contained in the ICB. The services that ICB provided are
accessible at well-known addresses. It is anticipated that there will be a fixed number
of 1CBs deployed at well-known locations hosted by organizations supporting the

UniFrame Approach.

0 Query Manager (QM): The QM translates an application engineer’s requirements
specification for a component into a Structured Query Language (SQL) statement
and dispatches this query to the appropriate head-hunters. The headhunters, in
turn, return lists of components that match the search criteria contained in the
guery. The QM and the Link Manager together are responsible for propagating
the queries to other linked ICBs.

o0 Domain Security Manager (DSM): The URDS discovery protocol is based on
periodic multicast announcements. The multicasting exposes the URDS to
security threats. The DSM is responsible for ensuring that the security and
integrity of the URDS are maintained. The security scheme implemented by the
DSM involves the generation and distribution of secret keys for the ICB. It also
enforces multicast group memberships and controls access to multicast addresses
alocated for a particular domain.

0 Link Manager (LM): The LM establishes links between ICBs to form a federation
and propagate the queries received from the QM to the linked ICBs. The ICB
administrator configures the LM with the location information of LMs of other
ICBs with which links are to be established.

0 Adapter Manager (AM): The AM acts as registry or lookup service for clients
seeking adapter components. Adapter components register with the AM and at the

31

same time indicate which component models they can bridge efficiently. The AM
is contacted by the clients to locate the adapter components matching their
reguirements.
e Headhunter (HH)
The Headhunter has al'so been discussed in 3.1.3. It is responsible for the detection of
the presence of service providers (service discovery), registration of functionality of
the service providers and returning to the ICB a list of discovered service providers
that match the requirements. Headhunters are specialized UMM components.
e MetaRepository (MR)
The MR is a database that serves a headhunter by holding the UMM specification
information of exporters. Currently, the MR is implemented as a relational database
using Oraclein the URDS.
e Active-Registries (ARS)
The ARs listen and respond to multicast messages from headhunters. Each aso has
introspection capabilities to discover not only the instances, but also the specifications
of the components registered with them. URDS implements them by extending the
native registries or lookup services of component models like RMI, CORBA and
Voyager.
e Services(S:..S))
The services may be implemented in diverse component models. Each identifies itself
by the service type name and the XML description of the component’s informal
UMM specification.
e Adapter Components (AC;..ACy)
These components serve as bridges between components implemented in different
component models like (J2EE, CORBA, .NET).
Figure 3.2 dso illustrates the users (C;..C,,) of the URDS system who can be the
Component Assemblers, System developers or System Integrators. However, in complete
UniFrame, there will be no direct interaction between the human users and the URDS.

The interaction would be viathe interface of the system generator.

32

The URDS architecture is organized as a federated hierarchy as shown in Figure
3.2 in order to achieve scaability. Every ICB has zero or more Headhunters attached to
it. The ICBsin turn are linked together with unidirectional links to form a directed graph.
The URDS discovery process is “administratively scoped”, i.e., it locates services within
an administratively defined logica domain, which refers to industry specific markets
such as Financia Services, Hedth Care Services, Manufacturing Services, etc. The
domains supported are determined by the organizations providing the URDS service. The
URDS architecture is designed to handle failures through periodic announcements (in
case of Headhunters), ‘heartbeat’ probes (in case of Link Managers) and information

caching.

3.6 The UniFrame System-L evel
Generative Programming Framework (USGPF)

The QoS is an integral part of every component in UMM and is inherent in any
systems generated from these components. Thus, the QoS plays an important role in the
entire UniFrame Approach and helps to create QoS-aware DCS from heterogeneous
distributed software components. The UniFrame Approach also shifts from the traditional
software development paradigm of developing single DCS to the paradigm of developing
aDCS family.

The USGPF redizes the UniFrame Approach on the system level. More
specifically, it addresses the generative domain engineering and the generative
application engineering aspects of the software development process in the UniFrame
Approach. The USGPF is divided into three parts:

e The UniFrame Generative Domain Moddl (UGDM), which defines the common
and variable properties of aDCS family.

e The UniFrame UGDM Development Process (UGDP), which defines the
procedure to efficiently create a UGDM for a DCS family with QoS constraints.

33

e The UniFrame System Generation Infrastructure (USGI), which facilitates the
automatic generation of QoS-aware DCS from a DCS family by integrating

heterogeneous software components.

In summary, this chapter provided an overview of the UniFrame project, including the
UMM, the UniFrame Approach and a brief description of the core tasks of this thesis, the
USGPF. In the following chapters, the details of each part of the USGPF are presented.
Chapter 4 describes the UGDM, Chapter 5 describes the UGDP, Chapter 6 describes the
USGI in high level concepts, and Chapter 7 describes the design and implementation of
the USGI in Java technology.

4. THE UNIFRAME GDM (UGDM)

This chapter describes the UniFrame GDM (UGDM), the first part of the
UniFrame System-Level Generative Programming Framework (USGPF). The function of
a UGDM is to capture the common and variable properties of a DCS family in the
USGPF. Before starting the description of the UGDM, this chapter provides a brief
discussion of the feature modeling and the UniFrame Domain Specific Language
(UDSL), which are the tools in the USGPF that are used to model and express the
UGDM stated in this chapter.

4.1 Feature Modeling
The purpose of feature modeling is to develop feature models for concepts or

features in a domain. Feature models define the common and variable features of concept
instances and the dependencies between the variable features. Constraints that can not be
expressed in afeature diagram have to be recorded separately. In the USGPF, thisis done
by the constraint expression in the UDSL which is presented in detail in Section 4.2.
Feature modeling [SEIO3, KAN90] is a very important contribution to the domain
engineering by the Software Engineering Institute (SEI) of Carnegie Mellon University
and is essentia to the generative programming.

As stated in [CZAOQOQ], there are two definitions of features found in domain
engineering literature: 1) An end-user-visible characteristic of a system, which is the
definition used in Feature-Oriented Domain Analysis (FODA); 2) A distinguishable
characteristic of a concept (e.g., system, component, and so on) that is relevant to some
stakeholder of the concept. The second definition is more genera and is preferred by

Czarnecki and Eisenecker, and is also used in the context of Organization Domain

35

Modeling (ODM) [SIM96, SEI02b], which is aso a popular domain engineering method
adopted by Hewlett Packard and others. This work also adopts the second definition,
because the feature modeling can be applied to any level of detail during domain
engineering, which isthe case in the UGDM.

Feature diagrams are usually tree-like structures, so they are aso caled feature
trees. There are two kinds of features in feature diagrams. mandatory features and
optional features. Whether a feature is mandatory or optional depends on its relationship
with its parent in afeature tree. A mandatory feature is a feature that must be included if
its parent is included in the description of a concept instance. An optional feature is a
feature that may be included if its parent is included in the description of a concept
instance. Sub-features of a feature can be grouped. There are two kinds of groups/sets:
alternative and or. For an alternative set, if the parent of the alternative set is included,
then exactly one feature in the alternative set is included in a concept instance. For an or
set, if the parent of the or set is included, then any non-empty set of the or set can be
included in a concept instance.

In the feature diagram, each feature is represented as a box. These features are
then arranged in a hierarchical manner. Each feature is decomposed until it is presented at
the level of interest to the users. For example, as a distributed computing system is
implemented as a collection of distributed components, when modeling distributed
computing system architecture in the UniFrame at the system level, the root node of a
feature diagram is the target system, the inner nodes are subsystems, and the leaf nodes
are abstract components, which are the blueprints for creating concrete components.

Two kinds of feature notations are used in a feature diagram to represent
mandatory features and optional features respectively. A mandatory feature is
represented by a box with a simple edge ending with a filled circle touching it. An
optional feature is represented by a box with a simple edge ending with an open circle
touching it. There are also two kinds of notations used in the feature diagram to model a
grouping. An alternative set is represented by edges connected by an arc. An or set is
represented by edges connected by a filled arc. See figure 4.1a for an example. The
details of feature notations are described in [CZAQQ].

36

Variation points are the features which have one or more direct optional sub-
features, and/or groups. In [CZAQQ], the authors apply the alternative and or with the
mandatory features. However, this conflicts with the definition of the mandatory feature.
Thus, some of the five types of variation points identified by the authors are not
considered valid in UGDM. In UGDM, if afeature is mandatory, it cannot be a variable
feature to its parent. Thus, only optional features can be used in alternative and or in the
UGDM. This modification is necessary as it is consistent with the definition of one-of
and more-of in the UniFrame Domain-Specific Language (UDSL). The modification does
not reduce the feature diagram'’s ability to represent the common and variable features. It
makes the semantics clearer. Figure 4.1 shows three basic variation points in the UGDM.
In the figure, @ means zero or more, which can be described by all in the UDSL; b)
means exactly one, which is an alternative and can be described by one-of in the UDSL;
and ¢) means one or more, which is an or and can be described by more-of in the UDSL.
Detail explanations are presented in the next section.

a) zero or more b) exactly one C) one or more

Figure 4.1 Types of Basic Variation Points in Feature Modeling

4.2 The UniFrame Domain Specific Language (UDSL)
The UniFrame Domain Specific Language (UDSL) is the tool in USGPF to
represent the UGDM in atextua format. It is a specia DSL specifically designed to be

used in the USGPF. It can represent both the information contained in feature diagrams

37

and those that can not be shown in feature diagrams. Before presenting the detail of the
UDSL, abrief introduction to the DSL is presented in this section.

4.2.1 Introduction to Domain-Specific Language

A domain specific language (DSL) is a specialized, problem-oriented language.
van Deursen [VANOQ] provided a definition for the DSL as follows: “A domain-specific
language (DSL) is a programming language or executable specification language that
offers, through appropriate notations and abstractions, expressive power focused on, and
usualy restricted to, a particular problem domain.” Domain specific language can be
textua (e.g., SQL) or graphical. Well-known examples of DSLs are SQL, HTML and
Make. DSLs are usually declarative. Consequently, they can be viewed as specification
languages, as well as programming languages.

DSLs play an important role in generative programming because they are not only
used to “order” concrete members of a system family, but also used to specify a system.
The feature diagram can be expressed by a domain specific language. Feature modeling
and DSL together can be used to specify a system or a family of systems to any level of
detaill. They can have different levels of speciaization. There can be more generd
modeling DSLs, for example, for expression synchronization constraints, or more
specialized, application-oriented DSLs. In general, severa different DSLs are needed to
specify a complete application. Furthermore, several different DSLs can be designed for
different categories of target users to specify one single application aspect, for instance, a

version for novice users and aversion for advanced users.

4.2.2 Detail of the UDSL
Varghese [VARO02] modified the DSL method proposed by van Deursen and Klint
[VANO2] to model and document the problem space of a domain that may involve a
distributed heterogeneous environment. This modified version is adopted in this work
with more modifications and is enhanced to create the UniFrame Domain Specific

38

Language (UDSL) to model and document the UGDM for a distributed computing
domain. The UDSL in Backus-Naur Form (BNF) is summarized in Table 4.1 and Table
4.2. Keywords used in the UDSL are shown in lower case with italic font in the tables.
The UDSL consists of four types of expressions to model and document a UGDM for a
DCS family by the UniFrame Approach: feature expressions, constraint expressions,
design feature expressions and use case expressions. These are discussed in the following
sections.

Table 4.1 BNF Definition of the UDSL

UniFrame Domain Specific Language (UDSL)

<UDSL-expression> ;:= <feature-expression> | <constraint-expression> | <design-feature-expression> |
<use-case-expression>

1. Feature Expression (Commonality and Variation)

<feature-expression> ::= <optional-feature> | <mandatory-feature> | <composite-feature> |
<non-exclusive-feature> | <aternative-feature>

<optional-feature> ::= <feature>?

<mandatory-feature> ::= <feature> | <feature>!

<composite-feature> ::= all (<feature-list>)

<non-exclusive-feature> ::= more-of (<optional-feature-list>)

<alternative-feature> ::= one-of (<optional-feature-list>)

<feature-list> ::= <mandatory-feature-list> | <optional-feature-list> |
<mandatory-feature-list>, <optional-feature-list> |
<optional -feature-list>, <mandatory-feature-list> |
<mandatory-feature-list>, <optional-feature-list>, <mandatory-feature-list> |
<optional -feature-list>, <mandatory-feature-list>, <optional-feature-list>

<mandatory-feature-list> ::= <mandatory-feature> | <mandatory-feature>,
<mandatory-feature-list>

<optional-feature-list> ::= <optional-feature> | <optional-feature>, <optional-feature-list>

<feature> ::= <atomic-feature> | <feature-expression>

<atomic-feature> ::= FEATURE

2. Congtraint Expression
<constraint-expression> ::= <multiplicity-constraint> | <default-constraint> |
<mapping-constraint> | <sati sfaction-constraint>

2.1 Multiplicity Constraint
<multiplicity-constraint> ::=
multiplicity ((<feature>, <feature>) : <multiplicity-expression>)
<multiplicity-expression> ::= NATURAL-NUMBER | NATURAL-NUMBER..* |
NATURAL-NUMBER..NATURAL-NUMBER

(Continued in Table 4.2)

39

Table 4.2 BNF Definition of the UDSL (Continued from Table 4.1)

UniFrame Domain Specific Language (UDSL)
(Continued from Table 4.1)

2.2 Default Constraint
<default-constraint> ::= default (<feature>: <feature>)

2.3 Mapping Constraint
<mapping-constraint> ::= map (<feature> : <feature>)

2.4 Satisfaction Constraint
<satisfaction-constraint> ::= <require-constraint> | <reject-constraint> |

<mutual-require-constraint> | <include-constraint> | <exclude-constraint>

<require-constraint> ::= require (<feature-list>)
<rgject-constraint> ::= reject (<feature-list>)
<mutual-require-constraint> ::= mutual _require(<feature-list>)
<include-constraint> ::= include (<feature>, <feature>)
<exclude-constraint> ::= exclude (<feature>, <feature>)

3. Design Feature Expression
<design-feature-expression> ::= <design-feature-interaction> | <design-feature-interface>
<design-feature-interaction> ::= interact (<design-feature>, <design-feature>)
<design-feature-interface> ::= interface (<design-feature>: provided_interface (<interface-
list>), required_interface (<interface-list>))
<interface-list> ::= INTERFACE | INTERFACE, <interface-list>
<design-feature> ::= SYSTEM | SUBSYSTEM | ABSTRACT-COMPONENT

4. Use Case Expression
<use-case-expression> ::= <use-case-component-level> | <use-case-function-level>
<use-case-component-level> ::= USE-CASE : path_c (<abstract-component-list>)
<use-case-function-level> ::= USE-CASE : path_f (<function-call-list>)
<abstract-component-list> ::= ABSTRACT-COMPONENT | ABSTRACT-COMPONENT,

<abstract-component-list>

<function-call-list> ::= <function-call> | <function-call>, <function-call-list>
<function-call> ::= ABSTRACT-COMPONENT.FUNCTION[<communication-pattern>]
<communication-pattern> ::= cpl | cp2s | cp2a

The UDSL is used to express not only the feature diagrams, but also other models
in the UGDM, such as the Critical Use Case Model (CUCM), QoS Composition and
Decomposition Model (QCDM), etc. Models expressed by the UDSL can be further
formally expressed by two-level grammar (TLG)[BRY02]. The work on using TLG to
formally express the UGDM is underway at University of Birmingham, a collaborator of

the UniFrame research.

40

4.2.2.1 Feature Expressions

The feature expression is used to express the commonality and variation of a

feature diagram in the UGDM. There are five types of feature expressions. optional

feature, mandatory feature, composite feature, non-exclusive feature and alternative
feature.

<optional-feature> ::= <feature>?

An optional feature is expressed as a feature followed by a question mark. An
optional feature means this feature may be included if its parent is included in the
description of a concept instance. An example of an optional feature is presented in
the description of the composite feature below.

<mandatory-feature> ::= <feature> | <feature>!

A mandatory feature is expressed as a feature followed by an exclamation mark. The
exclamation mark can be omitted. A mandatory feature means this feature must be
included if its parent is included in the description of a concept instance. An example
of amandatory feature is presented in the description of the composite feature below.
<composite-feature> ::= all (<feature-list>)

A composite feature is composed from features in the feature list. It is defined as a
feature list preceded by the all keyword. Features in this feature list can be optional,
mandatory, or a mixture of both. If all the features in this feature list are optional, it
represents the “zero or more” variation point as shown in Figure 4.1. If the feature list
consists of only one feature, then the keyword all can be omitted. For example, in the
expression, UserSubsystem : all (ATM?, CashierTerminal), the composite feature
UserSubsystem is composed from ATM which is an optional feature and
CashierTerminal which is a mandatory feature. In this example, Usersubsystemis the
parent of ATM and CashierTerminal, thus if UserSubsystem is included in a system
description, CashierTerminal must be present; however, ATM may be present.
<non-exclusive-feature> ::= more-of (<optional-feature-list>)

A non-exclusive feature is defined as an optional feature list preceded by the more-of
keyword. Every feature in the feature list may be present; however, there must be at

least one feature to be present if the non-exclusive feature is present. It expresses the

41

“one or more” variation point as shown in Figure 4.1. It has the meaning of or in a
feature model. If the feature list consists of only one feature, then the keyword more-
of can be omitted. For example, in the expression, TransactionServer Subsystem:
more-of (DeluxeTransactionServer, EconomicTransactionServer), the non-exclusive
feature TransactionServerSubsystem is defined by the optional feature list
(DeluxeTransactionServer, EconomicTransactionServer); thus, it can be either one of
the two optional features in the optional feature list or can be both of them, i.e., there
are three possibilities for TransactionServer Subsystem.
e <dternative-feature> ::= one-of (<optional-feature-list>)

An dternative feature is defined as an optiona feature list preceded by the one-of
keyword. It expressed the “exactly one” variation point as shown in Figure 4.1. It has
the meaning of alternative in a feature model. If the feature list consists of only one
feature, then the keyword one-of can be omitted. For example, in the expression,
| AccountDatabase: one-of (IAccountDatabasel, |AccountDatabase?), the alternative
feature |AccountDatabase is defined as ether [AccountDatabasel or
| AccountDatabase?.

In the UDSL, a feature list is a list of features without any ordering constraints.
Featuresin afeature list can be optional or mandatory. Thus, a feature list may consist of
only optional features, only mandatory features or a mixture of both in any order. An
optional feature list is a special feature list in which all features are optional. A
mandatory feature list is another special feature list in which all features are mandatory.
Since the feature lists in non-exclusive features and alternative features are al optional

feature lists, the question mark can be omitted for the optional featuresin these lists.

4.2.2.2 Constraint Expressions

Constraints reveal the relations that cannot be deduced from feature expressions.
It further limits the variability of a feature diagram. In the UDSL, there are four
categories of constraint expressions: multiplicity constraint, default constraint, mapping

constraint and sati sfaction constraint.

42

4.2.2.2.1 Multiplicity Constraint

The multiplicity constraint reveals the multiplicity relationship between different

features. The syntax for this constraint expression is defined as:

<multiplicity-constraint> ::=

multiplicity ((<feature>, <feature>) : <multiplicity-expression>)

The keyword for the multiplicity expression is multiplicity. The expression follows
the UML convention in expressing multiplicity. The multiplicity for the first feature
is 1 and the one for the second feature is indicated by the multiplicity expression. The
meaning is for one instance of the first feature, how many instances of the second
feature are related. For example, in the expression, multiplicity ((Bank,
TransactionServerManager) : 1), each Bank is related to one copy of
TransactionServerManager.

The multiplicity expression used in the multiplicity constraint includes. 1)

NATURAL-NUMBER, which is any non-negative integer; 2) NATURAL-NUMBER..*,
which means at least the number specified by NATURAL-NUMBER. Two specia cases

are 0..*, which means zero or more, and 1..*, which means one or more; 3) NATURAL-
NUMBER..NATURAL-NUMBER, which denotes the range specified by the two
NATURAL-NUMBER in the expression, the second one of which must be larger. Other

multiplicity expressions can aso be defined when needed.

4.2.2.2.2 Default Constraint

The default constraint is used to express the default value in a feature expression.

There is only one expression in this category. The syntax for this expression is defined as:

<default-constraint> ::= default (<feature>: <feature>)

The keyword for the default expression is default. The expression means the default
feature for the first feature is the second feature in the expression. The first feature is
usually a variation point and the second feature is a sub-feature of the first feature.

For example, in the expression, default (UserSubsystem: CashierTerminal),

43

User Subsystem is a variation point as shown in the example of composite feature, the
default for it is CashierTerminal.

4.2.2.2.3 Mapping Constraint
The mapping constraint is used for mapping from one model to another model in
the UGDM. The mapping can be considered as a kind of transformation. It can relate
different models, or it can reveal more detailed lower level information from one model
to anther in a hierarchical setting. Examples of mapping are the architecture to critical use
case model mapping at function/interface level and the architecture model mapping,
which are shown in Section 4.3.
e <mapping-constraint> ::= map (<feature>, <feature>)
The keyword for the mapping constraint is map. The expression means that the first
feature is mapped to the second feature in the expression. The mapping is not
reversible, i.e, it is not symmetric. However, the mapping is transitive. For example,
in the expression, map (BankCasel: BankCasel 1), BankCasel is an architecture
instance at the abstract component level, BankCasel 1 is an architecture instance at
the function/interface level, and BankCasel is mapped to BankCasel 1.
BankCasel 1 consists of more detailed information than BankCasel about the system
architecture and the reverse mapping loses information, which will become clear in

Chapter 5. That iswhy mapping constraint is not reversible.

4.2.2.2.4 Satisfaction Constraint

The satisfaction constraint reflects the constraints identified in van Deursen and
Klint's work [VANOZ2] with slight modifications and some enhancements. The
satisfaction constraint includes five types of constraints in the UDSL: require constraint,
reject constraint, include constraint, exclude constraint and mutual_require constraint.
The first four types have the same semantics as requires, excludes, include and exclude

respectively in van Deursen’s work. The mutual_require constraint is added to the

44

satisfaction constraints in the UDSL to simplify the expression of the situation in that a

list of features must all be present or none is present. In [VANO2], the satisfaction

constraints are classified into two categories. diagram constraints and user constraints.

The diagram constraints express fixed and inherent dependencies across features in a

feature model. The user constraints express the user requirements regarding the presence

or absence of a feature, thus, it is used in the application engineering to specify system

requirements. The diagram constraints consist of require constraint, reject constraint and

mutual_require constraint. The user constraints consist of include constraint and exclude

constraint. Following is the syntax and brief description of each satisfaction constraint.

e <require-constraint> ::=require (<feature>, <feature>)
This satisfaction rule expresses the constraint that if the first feature is present, then
the second feature must be present as well. The keyword to express this kind of
constraint is require. For example, the expression, require (SavingAccount,
InterestRate), means SavingAccount is associated with InterestRate. However, the
reverse might not be true. For example, InterestRate can be associated with
MoneyMar ketAccount, not SavingAccount.

e <rgiect-constraint> ::= rgject (<feature>, <feature>)
This satisfaction rule expresses the constraint that if the first feature is present, then
the second feature must not be present. The keyword to express this kind of constraint
is regect. Fore example, the expression, regect (CheckingAccount, InterestRate),
means CheckingAccount can not be associated with InterestRate. The reverse is also
truein thisrule. InterestRate can not be associated with CheckingAccount.

e <mutual-require-constraint> ::= mutual _require (<feature list>)
This satisfaction rule expresses the constraint that if any feature in the feature list is
present, all other features in the feature list must be present as well. There can be
more than two features in the expression. The keyword to express this kind of
constraint is mutual_require. For example, the expression, mutual_require (ATM,
CustomerValidationServer), means ATM and CustomerValidationServer must be

present together, or none of them is present.

45

e <include-constraint> ::= include (<feature list>)
This satisfaction rule expresses the constraint set by users that the features included
in the feature list must be present in a generated system to satisfy the system
requirement. The keyword to express this kind of constraint is include. For example,
the expression, include (ATM), means the user requires the generated system to
contain ATM.

e <exclude-constraint> ::= exclude (<feature list>)
This satisfaction rule expresses the constraint set by users that features in the feature
list must not be present in a generated system. The keyword to express this kind of
constraint is exclude. For example, the expression, exclude (ATM), means the user

requires the generated system must not contain ATM.

4.2.2.3 Design Feature Expressions

Design features are used to capture a hierarchical system architecture in the
UGDM. A hierarchical system architecture in the USGPF is formed into layers. Elements
in layers are classified into three types that are captured as design features. system,
subsystem and abstract component. The root of a system architecture hierarchy is a
design feature of system. The leaves of a system architecture are design features of
abstract component. The rest of a system architecture are design features of subsystem.
The rationale is that a system is composed from a set of subsystems, a subsystem is
composed from a set of abstract components, and abstract components are the building
blocks. Thus a subsystem can be viewed as a composite component. The detail about this
hierarchical architecture is described in Chapter 5. The purpose of design feature
expressions is to capture the interfaces of design features and the interactions between
design features. An interface here is defined as a set of published functionality available
to public invocation.

e <design-feature-interaction> ::= interact (<design-feature>, <design-feature>)
This statement says the first design feature interacts with the second design feature.
The first feature is the initiator of this interaction and the second feature is the

46

responder of this interaction. The interaction expressed in this rules reflect the
cooperative aspect of components in the UniFrame. The first design feature is the
preprocessing collaborator of the second design feature and the second design feature
is the post-processing collaborator of the first design feature. If both design features
can be the initiator of the interaction, that is, they are peers; then, two statements of
design feature interaction are required to capture this kind of interaction. One special
case of thisrule is that the first design feature can be users. Thus, it can be extended
to describe user-system interactions. The keyword for this expression is interact. For
example, the expression, interact (CashierTerminal, CashierValidationServer),
reveals the interaction between CashierTerminal and CashierValidationServer, and
CashierTerminal istheinitiator of the interaction.

<design-feature-interface> ::= interface (<design feature>: provided_interface
(<interface-list>), required_interface (<interface-list>))

This statement expresses the provided interfaces and required interfaces for a design
feature. The provided interfaces are those interfaces provided by a design feature to
other design features. The required interfaces are those interfaces required by this
design feature from other design features. The interfaces in the interface-list are
defined for a domain during UGDP. Detail of how to develop these interfaces is
presented in Chapter 5. For any design feature, it must provide an interface for other
design features. However, it may not require any interfaces from any other design
feature. Thus, the interface list for the required interface may be empty. When it is
empty, denote it as NONE. There are three keywords in this expression to achieve the
necessary semantics. interface, provided interface and required interface. For
example, the expression, interface (DeluxeTransaxtionServer: provided interface
(IAccountManagement, | Customer Management), required_interface
(IAccountDatabase)), states that the provided interfaces for DeluxeTransaxtionServer
are | AccountManagement and |1Customer Management, and the required interface for
DeluxeTransaxtionServer is | AccountDatabase.

47

4.2.2.4 Use Case Expressions

A use case expression captures the realization of a use case in a sequence

diagram. It is an ordered sequence of abstract components or function calls, depending on

the level of detail. A use case can be described at two levels, abstract component level

and function/interface level asindicated by the two use case expressions.

<use-case-component-level> ::= <use-case> : path_c (<abstract-component-list>)
This statement describes the expression for a use case at the abstract component level.
At the abstract component level, a use case is described by a set of abstract
components. An ordered sequence of interactions of these abstract components
realizes the use case. The first abstract component in the list is the initiator of this use
case. For example, the expression, DepositMoneyCasel: path _c (CashierTerminal,
DeluxeTransactionServer, AccountDatabase), means the use case
DepositMoneyCasel is realized by the cooperation of following three components in
order: CashierTerminal, DeluxeTransactionServer, and AccountDatabase, i.e,
CashierTermianal communicates with DeluxeTransactionServer, which then
communicates with AccountDatabase. Angular brackets are used to enforce another
order constraint. For example, OpenAccountCase2: path ¢ (<CashierTerminal,
TransactionServerManager>, EconomicTransactionServer), means the use case
OpenAccountCase? is realized by the cooperation of the three components in the
following way: CashierTerminal firstly communicates with
TransactionServerManager, then it communi cates with EconomicTransactionServer.
<use-case-function-level> ::= <use-case> path_f (<function-call-list>)

This statement describes the path for a use case at the function/interface level. At the
function/interface level, the use case is described by a set of function calls. An
ordered sequence of function calls realizes the use case. The first function call in the
list is the initiating function call of this use case. The syntax for a function call is
presented next in this section. For example, the expression, DepositMoneyCasel _1:
path_f (CashierTerminal.deposit[cp2s], DeluxeTransactionServer.deposit]cp2g],
AccountDatabase.getAccount[cp2s], AccountDatabase.saveAccount[cp2s]), reveds

48

the ordered sequence of function cals that redizes the use case
DepositMoneyCasel 1.

e <function-call> ::= <abstract-component>.<function>[<communication-pattern>]
This provides the syntax for a function call in the UGDM. A function call is an
interaction between two components. An initiator component calls a function
provided by a responder. The syntax specifies the abstract component that provided
the function, the name of the function and the associated communication pattern for
the function. The communication pattern provides information about parallelism, i.e.
the synchronization aspect of function calls. The basic communication patterns
considered are:

0 one way. This communication pattern is denoted as cpl. It describes the
situation in which an initiator initiates an interaction but it does not expect
any response from a responder. Thus the initiator calls the responder and
then continues to do its work.

0 two way synchronous: This communication pattern is denoted as cp2s. It
describes the situation in which an initiator initiates an interaction and
waits until it receives a response from the responder before it can do
anything else.

0 two way asynchronous: This communication pattern is denoted as cp2a. It
describes the situation in which an initiator initiates an interaction and
expects a response from the responder. However, it does not wait for the
response. Instead, it continues to do other things. When the response
comes, then it reacts to the response. Thus, the communication happensin

an asynchronous manner.

4.2.3 Three Forms of the Feature Description
for a Feature Diagram in the UDSL

As stated above, a feature diagram can be expressed using the UDSL. The feature
description for afeature diagram in the UDSL is organized into three forms: hierarchical
form, normalized form and digunctive normal form. The hierarchical form is the direct

49

textual description of afeature diagram. Given a direct textual representation of a feature
diagram, further operations like normalization and expansion can be applied to transform
the hierarchical form into other forms. The normalization rules and expansion rules stated
in [VANO2] are adopted in this work and are shown in Appendix A and each rule is
followed by a simple description. Examples of applying these rules on feature diagrams
are developed in Chapter 5. The possible implementation of these rules and the constraint
checking during applying these rules by Generic Modeling Environment [GME] are
discussed in Chapter 8. These transformations are important because they are the process
to produce distinctive and customized instances from a system family described by a set
of feature diagrams with common and variable properties.

(Transaction

Subsystem)
(EconomicTransaction (DeluxeTransaction [Transaction
Subsystem) Subsystem) ServerManager]

[Economic
Transaction
Server]

[Deluxe
Transaction
Server]

[Account
Database]

Figure 4.2 Feature Diagram of TransactionSubsystem
in the Banking Domain Example

Table 4.3 Feature Description of TransactionSubsystem in the Hierarchical Form

An Example of Feature Description in the Hierarchical Form

TransactionSubsystem: all (TransactionServerManager, one-of (EconomicTransactionSubsystem,
DeluxeT ransactionSubsystem))

EconomicTransactionSubsystem: EconomicTransactionServer

DeluxeTransactionSubsystem: all (DeluxeT ransactionServer, AccountDatabase)

50

4.2.3.1 Hierarchical Form

The hierarchical form is the direct description of a feature diagram as a textual

expression. It expresses the feature diagram from the root to the leaves. The first
statement in the hierarchical form is the expression for the root feature (or concept) in
terms of al its direct children in the feature diagram. The rest of statements in the
hierarchical form describe inner features in the feature diagram in terms of their direct
children. Figure 4.2 shows the feature diagram for the TransactionSubsystem devel oped
in Chapter 5 for the banking domain example. Table 4.3 shows the description of this
feature diagram in hierarchical forminthe UDSL.

4.2.3.2 Normalized Form

The hierarchical form can be transformed into normalized form, which expresses

the root feature (or concept) in terms of the leave features without the inner featuresin a
feature diagram. The way to transform a hierarchical form into a normalized form is
simple: for the root expression in the hierarchical form, substitute features in the right
hand side of the expression until all the features in the right hand side are leaf features;
then apply the normalization rules as described in van Deursen’s work [VANOZ2]. The
purpose of the normalization is to simplify the feature expression by removing the
duplicate features and restructuring the expression. Table 4.4 shows an example of
feature description in the normalized form derived from the hierarchical form shown in
Table 4.3 for TransactionSubsystem.

Table 4.4 Feature Description of TransactionSubsystem
in the Normalized Form

An Example of Feature Description in the Normalized Form

TransactionSubsystem: all (TransactionServerManager, one-of (EconomicTransactionServer,
all (DeluxeTransactionServer, AccountDatabase)))

51

4.2.3.3 Disjunctive Normal Form

The normalized form can be further transformed into digunctive normal form,

which is defined as followsin van Deursen and Klint's work [VANO2]:
one-of (all (A1, ..., A1nn), -+, &l (Ama, -., Amem))

The outermost operator of a digunctive normal form is one-of, and its arguments are all
alls with arguments of only mandatory feature lists containing leave features. The
resulting representation is essentially a list of al possible configurations. This
transformation is done by the expansion rules described in van Deursen and Klint's work
[VANO2]. During this transformation, each digunct is checked against the appropriate
constraints to determine whether the digunct is valid or not. Table 4.5 shows an example
of afeature description in the digunctive normal form derived from the normalized form
shown in Table 4.4 for TransactionSubsystem. This example shows two disuncts for
TransactionSubsystem, which means two designs.

Table 4.5 Feature Description of TransactionSubsystem
in the Digunctive Normal Form

An Example of Feature Description in the Digjunctive Normal Form

TransactionSubsystem: one-of (all (TransactionServerManager, EconomicTransactionServer),
all(TransactionServerManager, DeluxeT ransactionServer, AccountDatabase))

4.2.4 Implementation of the UDSL

Many DSLs are supported by a DSL compiler which generates applications from
aDSL program. In this case, the DSL compiler is referred to as an application generator
in the literature [CLE88]. A DSL is usually implemented in two steps: 1) firstly, construct
a library that implements the semantic notations; 2) secondly, design and implement a
compiler that translates DSL programs to a sequence of library cals. The UDSL is
implemented in an analogous way in the USGPF. Firstly, the UGDM described by the
UDSL is constructed into a UGDM Knowledge Base (UGDMKB), which can consist of
both databases and libraries. Secondly, a system generator which consists of the

52

processing logics of the UGDM is designed and implemented. This will become clear in
the latter chapters.

4.3 The UniFrame GDM (UGDM)
The outline for the UGDM is shown in Table 4.3. The UGDM consists of three

parts. general information, which includes a description for the domain modeled; a

problem space, which an application programmer can use to specify the needs; and a
solution space, which contains various models including configuration knowledge to
provide solutions for a DCS family. The detailed description of the UGDM is in the
coming sections with examples from a banking domain developed in Chapter 5. The

complete UGDM for the banking domain example is provided in Appendix J.

Table 4.6 Outline of the UGDM

Outline of the UGDM
1. General Information
1.1 Domain Name
1.2 System Family Name
1.3 Version
1.4 Date
1.5 Author
1.6 Description
2. Problem Space
2.1 Use Case Modd
2.2 QoS Requirement Model
2.3 Architecture Model in Hierarchical Form
2.4 System-Level Multiplicity Model
3. Solution Space
3.1 Architecture-Related Models
3.1.1 Architecture Model in Disjunctive Normal Form (Abstract Component Level)
3.1.2 Architecture Model in Digjunctive Normal Form (Function/Interface Level)
3.1.3 Architecture Model Mapping
3.1.4 Abstract Component I nteraction Model
3.1.5 Component-Level Multiplicity Model
3.2 Design-Feature-Related Models
3.2.1 Interface Model
3.2.2 Abstract Component I nterface Model
3.2.3 Abstract Component Model
3.3 QoS-Related Models
3.3.1 Critical Use Case Model (Function/Interface Level)
3.3.2 Architecture Model in Disjunctive Normal Form and Critical Use Case Model
Mapping (Function/Interface Level)
3.3.3 QoS Composition and Decomposition Model (QCDM)

53

4.3.1. Generd Information in the UGDM

This section of the UGDM provides the general information about a DCS family

that is captured and modeled by the UGDM. The general information includes a domain

name, a system family name, a version number, a creating date, authors and an informal

brief description for the DCS family.

Domain Name: This entry describes the full name of a domain. Domain names are
organized into a hierarchical structure for the simplicity. The root of the hierarchy is
represented as /. The root consists of multiple top domains, such as finance,
transportation, communication, etc. Each top domain consists of multiple sub-
domains. For example, the finance domain may be divided into insurance, banking,
mortgage, etc. The separator between a domain or a sub-domain and its sub-domains
is aso /. Thus the name looks like an absolute path name of a file. For example, the
name for the banking domain can be /Finance/Banking.

System Family Name: This entry describes the name of the system family in a DCS
domain that this UGDM models. This can aso be viewed as a sub-domain for the
domain indicated in the above entry. However, they are different. Systems are
standal one concrete entities in the world, but domains and sub-domains in the above
entry are abstract higher level concepts. For example, the system family name for the
example developed in Chapter 5 is Bank, which represents the real world system. It is
from the Banking sub-domain in the Finance domain. Finance and Banking are
higher abstract concepts.

Version: This entry documents the version of the UGDM for a domain. As the
development of a UGDM for a domain is an iterative and incremental process, a
UGDM for adomain evolves over time. The notion of version is the way to track the
history.

Date: This entry documents when this UGDM was devel oped.

Author: This entry shows the developers, maintainers or the responsible organizations
for thisUGDM.

54

e Description: This entry provides an informal text description for the system family to
be described in this UGDM. This includes special information or characteristics that
can not be captured by other entries of the UGDM.

4.3.2 Problem Space in the UGDM
This section of the UGDM consists of three models. Use Case Model (UCM),
QoS Requirement Model (QRM) and Architecture Model in Hierarchical Form (AMHF).
These models provide problem related domain specific concepts and features.
Information provided by these models can be used to express an “order” for a system
from aDCS family by users (system integrators, or application engineers).

Table 4.7 An Example of UCM

Use Case Model of the Banking Domain Example

1. Commonality and Variation

Bank: al (ManageCustomers, ManageA ccounts, Login-exitAccount, ValidateUsers)

ManageCustomers: all (OpenAccount, CloseAccount)

ManageAccounts: al (ManageAccounts Cashier, ManageAccounts Customer?)

ManageAccounts Cashier: al (WithdrawMoney Cashier, DepositMoney_Cashier,
TransferMoney_Cashier, CheckBalance Cashier)

ManageAccounts Customer: all (WithdrawMoney Customer,
DepositMoney_Customer, TransferMoney_Customer, CheckBalance Customer)

ValidateUsers:. al (ValidateUsers Cashier, ValidateUsers Customer?)

Login-exitAccount: all (Login-exitAccount_Cashier, Login-exitAccount_Customer?)

2. Congtraint Expression

2.1 Default Constraint
default (ManageA ccounts: ManageAccounts_Cashier)
default (ValidateUsers: ValidateUsers Cashier)
default (Login-exitAccount: Login-exitAccount_Cashier)

2.2 Satisfaction Constraint
mutual_require (ValidateUsers Customer, ManageAccounts_Customer, Login-

exitAccount_Customer)

55

4.3.2.1 Use Case Modedl (UCM)
This model provides the information about the domain requirements highlighting

the necessary functional aspects. Use cases describe externally visible behaviors of a
system. This model describes the common and variable requirements for a product line in
a domain. The UGDP is a use case driven process. The use case model is an essential
artifact in this process. Table 4.7 shows an example of the UCM for the banking domain
developed in Chapter 5. The UCM consists of two parts. The first part is the description
of the commonalities and variations of the use cases for a DCS family. The second part

provides the constraints between use cases.

4.3.2.2 QoS Requirement Model (QRM)
This model provides the information about the domain requirements highlighting

the non-functional aspects, namely, the QoS aspects, which is an inherent characteristic
of UniFrame. It is important to identify and model the domain QoS requirement in order
to build QoS-aware DCS. The QRM can be viewed as the QoS aspect at the system level
that can be used to express system QoS requirements. For example, in Table 4.8, the
QRM states that the QoS aspect of the bank DCS family is described by system
throughput and system end to end delay, which are derived from critical use case models.
More detail about this model can be found in Section 5.2.2.3.

Table 4.8 An Example of the QRM

QoS Requirement Model of the Banking Domain Example

System.QoS: al (System.QoS.throughput, System.QoS.endToEndDel ay)
System.QoS.throughput: Critical UseCaseM odel.QoS.thoughput
SystemQoS.endToEndDelay: CriticalUseCaseM odel.QoS.endToEndDel ay

4.3.2.3 Architecture Model in Hierarchical Form (AMHF)

This model provides the information about the domain requirements highlighting

the architectural aspects of a DCS family. It reflects the commonality and variation in the

56

architecture of a DCS family. The hierarchical form is a layered design, which is
described in detail in Section 5.3.1. Table 4.9 shows the example of the AMHF from a
banking domain developed in Chapter 5. The AMHF consists of two parts. The first part
is the description of the commonalities and variations of the architecture for a DCS

family. The second part provides the constraints between architecture properties.

Table 4.9 An Example of the AMHF

Architecture Model in Hierarchical Form of the Banking Domain Example

1. Commonality and Variation
Bank: all (UserSubsystem, UserValidationSubsystem, TransactionSubsystem)
UserSubsystem: al (ATM?, CashierTerminal)
UserValidationSubsystem: all (CustomerValidationServer?, CashierValidationServer)
TransactionSubsystem: all (TransactionServerManager, one-of

(EconomicTransactionSubsystem, DeluxeT ransactionSubsystem))

EconomicT ransactionSubsystem: EconomicTransactionServer
DeluxeTransactionSubsystem: all (DeluxeT ransactionServer, AccountDatabase)

2. Congtraint Expression

2.1 Default Constraint
default (UserSubsystem: CashierTerminal)
default (UserValidationSubsystem: CashierV alidationServer)
default (TransactionSubsystem: all (TransactionServerManager,

EconomicTransactionSubsystem)

2.2 Satisfaction Constraint

mutual_require (ATM, CustomerV aliationServer)

Table 4.10 An Example of the System-Level MM

System-Level Multiplicity Model of the
Banking Domain Example

multiplicity ((Bank, CashierTerminal): 1..*)
multiplicity ((Bank, ATM) : 0..%)

multiplicity ((Bank, CashierValidationServer) : 1)
multiplicity ((Bank, CustomerValidationServer) : 0..1)
multiplicity ((Bank, TransactionServerManager) : 1)
multiplicity ((Bank, EconomicTransactionServer) : 0..2)
multiplicity ((Bank, DeluxeTransactionServer) : 0..2)
multiplicity ((Bank, AccountDatabase) : 0..2)

57

4.3.2.4 System-Level Multiplicity Model (MM)
The multiplicity model defines the multiplicity constraints in a system. The

multiplicity constraints are defined at two levels. system-level multiplicity and
component-level multiplicity. The system-level multiplicity expresses the multiplicity of
the root feature (a system) in terms of leaves (abstract components) in a feature diagram
of AMHF. The component-level multiplicity is a solution space topic and is discussed in
the Section 4.3.3.1.5.

4.3.3 Solution Space in the UGDM
This section presents various models including the configuration knowledge to
provide solutions for a DCS family. These models are organized into three categories:
architecture related models, design feature related models and QoS related models. Some
configuration knowledge is reflected in models, such as the Architecture Model in
Digunctive Normal Form (AMDNF) reflects the configuration knowledge of illegal
component combinations when it is transformed from Architecture Model in Normalized

Form (AMNF) by the expansion rules. More details are presented in Chapter 5.

4.3.3.1 Architecture-Related Models
The UGDM provides a common architecture with variations for a DCS family.

The commonalities and variations in the architecture are reflected in different architecture
related models, such as Architecture Model in Digunctive Normal Form (AMDNF) at
both abstract component level and function/interface level, Architecture Model Mapping
(AMM), Abstract Component Interaction Model (ACIM) and component-level
Multiplicity Model (MM). These models also reflect the architecture at different level of
details.

58

4.3.3.1.1 Architecture Model in Digunctive Normal Form (Abstract Component Level)

The Architecture Model in Digunctive Norma Form (AMDNF) at the abstract
component level shows what kind of abstract components are needed for an architecture
instance at the component level without concerning about the lower level of detail like
communication patterns. This model is derived from the AMHF by normalization and
expansion as discussed in Section 4.2.3. Table 4.11 provides an example of the AMDNF
at the abstract component level from the banking domain.

Table 4.11 An Example of the AMDNF at the Abstract Component Level

AMDNF at Abstract Component Level for the Banking Domain Example

1. Digunctive Normal Form
Bank: one-of (BankCasel, BankCase2, BankCase3, BankCase4)

BankCasel: al (ATM, CashierTerminal, CustomerV alidationServer,
CashierValidationServer, TransactionServerManager, EconomicTransactionServer)

BankCase2: al (ATM, CashierTerminal, CustomerV alidationServer,
CashierValidationServer, TransactionServerManager, DeluxeT ransactionServer,
AccountDatabase)

BankCase3: all (CashierTerminal, CashierValidationServer, TransactionServerManager,
EconomicTransactionServer)

BankCase4: al (CashierTerminal, CashierValidationServer, TransactionServerManager,
DeluxeT ransactionServer, AccountDatabase)

2. Constraint Expression
2.1 Default Constraint
Default (Bank: BankCase3)

4.3.3.1.2 Architecture Model in Digjunctive Normal Form (Function/Interface Level)

The Architecture Model in Digunctive Norma Form (AMDNF) a the
function/interface level provides all possible architecture instances for a DCS family. It
also provides more detail information such as the necessary communication patterns in an
architecture instance. Table 4.12 provides an example of the AMDNF at the
function/interface level from the banking domain.

Table 4.12 An Example of the AMDNF at the Function/Interface Level

59

AMDNF at Function/Interface Level for the Banking Domain Example

1. Digiunctive Normal Form

Bank: one-of (BankCasel, BankCase?, BankCase3, BankCase4)

BankCasel: one-of (BankCasel 1)

BankCase2: one-of (BankCase2 1, BankCase2 2)

BankCase3: one-of (BankCase3 1)

BankCase4: one-of (BankCase4 1, BankCase4 2)

BankCasel 1: al (ATMCasel, CashierTermina Casel, CustomerValidationServerCasel,
CashierValidationServerCasel, TransactionServerManagerCasel,
EconomicTransactionServerCasel)

BankCase2 1: al (ATMCasel, CashierTermina Casel, CustomerValidationServerCasel,
CashierValidationServerCasel, TransactionServerManagerCasel,
DeluxeTransactionServerCasel, AccountDatabaseCasel)

BankCase2 2: al (ATMCasel, CashierTermina Casel, CustomerValidationServerCasel,
CashierValidationServerCasel, TransactionServerManagerCasel,
DeluxeTransactionServerCase2, AccountDatabaseCase?)

BankCase3 1: al (CashierTerminalCasel, CashierValidationServerCasel,
TransactionServerManagerCasel, EconomicTransactionServerCasel)

BankCase4 1. al (CashierTerminalCasel, CashierValidationServerCasel,
TransactionServerManagerCasel, DeluxeTransactionServerCasel,
AccountDatabaseCasel)

BankCase4 2: all (CashierTerminal Casel, CashierValidationServerCasel,
TransactionServerManagerCasel, DeluxeTransactionServerCase2,
AccountDatabaseCase?)

2. Congtraint Expression

2.1 Default Constraint
default (BankCase2: BankCase2 1)
default (BankCase4: BankCase4 1)

4.3.3.1.3 Architecture Model Mapping (AMM)

This mapping provides the transformation for an AMDNF form from the abstract

4.13 shows an example of the AMM from the banking domain.

Table 4.13 An Example of AMM

AMM for the Banking Domain Example

map (BankCasel: BankCasel 1)
map (BankCase2: BankCase2 1)
map (BankCase3: BankCase3 1)
map (BankCased: BankCase4 1)

component level to the function/interface level. The transformation uses the default
constraint information provided by the AMDNF at the function/interface level. Table

60

4.3.3.1.4 Abstract Component Interaction Model (ACIM)

This model describes how the abstract components interact with each other. It
provides information about the initiator and responder for each component interaction.
This model provides important configuration knowledge. The system generation
framework depends on this knowledge to configure a concrete instance of a DCS domain.
How the system generation framework uses this knowledge is described in Chapter 6.
Table 4.14 shows an example of ACIM from the banking domain.

Table 4.14 An Example of ACIM

ACIM for the Banking Domain Example

interact (CashierTerminal, CashierValidationServer)
interact (ATM, CustomerV aliationServer)

interact (CashierTerminal, TransactionServerM anager)
interact (CashierTerminal, EconomicTransactionServer)
interact (CashierTerminal, DeluxeTransactionServer)
interact (ATM, TransactionServerM anager)

interact (ATM, EconomicTransactionServer)

interact (ATM, DeluxeT ransactionServer)

interact (DeluxeT ransactionServer, AccountDatabase)

4.3.3.1.5 Component-Level Multiplicity Model (MM)

The multiplicity model defines the multiplicity constraints in a system. The
multiplicity constraints are defined at two levels. system-level multiplicity model and
component-level multiplicity model. The system-level MM is discussed in Section
4.3.2.4. The component-level multiplicity expresses the multiplicity of each pair of
interaction components. This is one of the configuration knowledge used to assemble a
system by the system generation framework. How the system generation framework uses
this knowledge is described in Chapter 6. Table 4.15 shows an example of component-
level MM from the banking domain.

61

Table 4.15 An Example of Component-level MM

Component-level Multiplicity Model for the Banking Domain Example

multiplicity ((CashierValidationServer, CashierTerminal) : 1..*)
multiplicity ((CustomerValiationServer, ATM) : 1..%)

multiplicity ((TransactionServerManager, CashierTerminal) : 1..*)
multiplicity ((EconomicTransactionServer, CashierTerminal) : 1..*)
multiplicity ((DeluxeTransactionServer, CashierTerminal) : 1..*)
multiplicity ((TransactionServerManager, ATM) : 1..*)
multiplicity ((EconomicTransactionServer, ATM) : 1..*%)
multiplicity ((DeluxeTransactionServer, ATM) : 1..%)

multiplicity ((DeluxeTransactionServer, AccountDatabase) : 1)

4.3.3.2 Design-Feature-Related Models

Design feature related models describe functional aspects of the design features
that form the architecture for a DCS family. These models include Interface Model (IM),
Abstract Component Interface Model (ACIM) and Abstract Component Model (ACM).

4.3.3.2.1 Interface Modéel (IM)

An IM includes dl the interfaces designed for a DCS family. An abstract
component must implement one or more of these interfaces. An abstract component can
also require one or more of these interfaces from its post-processing collaborator(s) in
order to accomplish its task. Table 4.16 shows an excerpt of | AccountDatabase designed
for the banking domain example. Complete examples can be found in both Chapter 5 and
Appendix E. The collection of al the interfaces for the domain forms the IM.

4.3.3.2.2 Abstract Component Interface Model (ACIM)

An ACIM shows the required and provided interfaces of all the abstract
components in a DCS family. That is, it defines the functional aspect of the abstract
components. Table 4.17 shows an excerpt of ACIM from the banking domain. The

complete example can be found in Section 5.3.5 or Appendix J.

Table 4.16 An Example of an Interface

An Interface Designed for the Banking Domain Example

Interface: 1 AccountDatabase
1. Syntax
Account getAccount(String accountNumber, int accountType);
Pre: NONE
Post: NONE
Invariant: NONE
Communication Pattern: cp2s or cp2a
Description: This function returns an account object as identified by the parameters. It
returns null if the account specified does not exist.

2. Variation
| AccountDatabase: one-of (I AccountDatabaseCasel, | AccountDatabaseCase2)
| AccountDatabaseCasel: { cp2s}
| AccountDatabaseCase?: { cp2a}
3. Default
default (1 AccountDatabase: | AccountDatabaseCasel)

Table 4.17 An Example of ACIM

62

Abstract Component Interface Model for the Banking Domain Example

1. Digunctive Normal Form
DeluxeTransactionServer: one-of (DeluxeT ransaxtionServerCasel,
DeluxeT ransactionServerCase2)
AccountDatabase: one-of (AccountDatabaseCasel, AccountDatabaseCase2)
EconomicTransactionServer: EconomicT ransactionServerCasel
TransactionServerManager: TransactionServerM anager Casel
CashierTerminal: CashierTerminal Casel
ATM: ATMCasel
CashierValidationServer: CashierValidationServerCasel
CustomerV alidationServer: CustomerV alidationServerCasel

interface (Del uxeTransaxtionServerCasel: provided interface (IAccountManagementCasel,
| CustomerManagementCasel), required_interface (1AccountDatabaseCasel))

interface (DeluxeTransactionServerCase2: provided interface (IAccountManagementCasel,
| CustomerManagementCasel), required_interface (I AccountDatabaseCase?))

...(continuing interface description for the rest of the abstract component listed above)

2. Congtraint Expression
2.1 Default Constraint
default (DeluxeT ransactionServer : DeluxeT ransactionServerCasel)
default (AccountDatabase : AccountDatabaseCasel)
2.2 Satisfaction Constraint
mutual_require (DeluxeT ransactionServerCasel, AccountDatabaseCasel)
mutual_require (DeluxeT ransactionServerCase2, AccountDatabaseCase?)

63

4.3.3.2.3 Abstract Component Model (ACM)

This model consists of the UMM descriptions for al the abstract components in
the domain. The detail of the UMM description including its format is discussed in
Chapter 3. Examples from the banking domain can be found in Appendix F.

4.4.3.3 QoS-Related Models

The QoS related Models are the solutions in the USGPF to validate the system
QoS for an assembled DCS. These models include Critical Use Case Modd at
function/interface level, Architecture Model in Digunctive Normal Form and Ciritical

Use Case Model Mapping at function/interface level, and QoS Composition and
Decomposition Model. All these models help to achieve static system QoS validation by
QoS composition and decomposition. Another QoS related model is the Event Grammar
Model for system behavior modeling, which is for dynamic system QoS validation and is

an ongoing effort.

4.4.3.3.1 Critical Use Case Mode (Function/Interface Level)

In the UGDM, the critical use cases are those that are important from the angel of
the system performance. Typically, the critical use cases are only a subset of the total use
cases of a system. Rarely, they can be the same. Each use case consists of a set of
scenarios that describe the sequence of actions required to execute the use case. Not all of
the scenarios belonging to a critical use case will be important from the QoS perspective.
In the critical use case model, only the most important scenario of a critical use case is
considered. The Critical Use Case Model (CUCM) at the function/interface level is one
of the important factors used while creating the QoS Composition and Decomposition
Mode (QCDM), which isdiscussed in Section 4.4.3.3.3. Table 4.18 shows an example of
the CUCM from the banking domain.

Table 4.18 An Example of CUCM

Critical Use Case Modd of the Banking Domain Example

1. Digiunctive Normal Form
CriticalUseCaseM odel: one-of (CriticalUseCaseModel1, Critical UseCaseM odel 2,
CriticalUseCaseM odel 3)

CriticalUseCaseModel 1: all (DepositMoneyCasel 1, WithdrawMoneyCasel 1,
TransferMoneyCasel 1)

CriticalUseCaseModel 2; all (DepositMoneyCasel 2, WithdrawMoneyCasel 2,
TransferMoneyCasel 2)

CriticalUseCaseModel 3: all (DepositMoneyCase2, WithdrawMoneyCase2,
TransferMoneyCase2)

DepositMoneyCasel_1: path_f(CashierTerminal .deposit[cp2s],
DeluxeT ransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

DepositMoneyCasel_2: path_f (CashierTerminal.deposit[cp2g],
DeluxeT ransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

...(continuing critical use case description for the rest of the critical use cases appear
above)

2. Constraint Expression
2.1 Default Constraint
default (CriticalUseCase: CriticalUseCase3)

Table 4.19 An Example of AMDNF and CUCM
Mapping (Function/Interface Level)

AMDNF and CUCM Mapping (Function/Interface Level)
for the Banking Domain Example

map (BankCasel 1: Critical UseCaseModel3)
map (BankCase2_1: CriticalUseCaseModel1)
map (BankCase2_2: CriticalUseCaseModel2)
map (BankCase3 1: Critical UseCaseModel 3)
map (BankCase4 1: CriticalUseCaseModel1)
map (BankCase4 2: CriticalUseCaseModel2)

4.4.3.3.2 Architecture Model in Digjunctive Normal Form and Critical Use Case Model
Mapping (Function/Interface Level)

The mapping from the AMDNF to the CUCM at the function/interface level in a
DCS family provides the solution to relate the system architecture to the static system
QoS validation mechanism which is based on the CUCM. How to achieve this mapping

65

and how to derive QoS composition and decomposition based on the CUCM are
discussed in Chapter 5. Table 4.19 is an example of this mapping from the banking

domain.

Table 4.20 An Example of QCDM

QoS Composition and Decomposition Model of the Banking Domain Example

QCDM: one-of(CriticalUseCaseModel 1, CriticalUseCaseM odel 2, Critical UseCaseM odel 3)
e CriticalUseCaseModel 1
1) QoS Composition Model
1.1) QoS Composition Rules for throughput
System.QoS.throughput = Critical UseCaseM odel 1.QoS.throughput
Critical UseCaseM odel 1.QoS.throughput = min (DepositMoneyCasel 1.QoS.throughput,
WithdrawMoneyCasel 1.QoS.throughput, TransferMoneyCasel 1.QoS.throughput)

1/DepositMoneyCasel 1.QoS.throughput = 1/CashierTerminal .deposit.QoS.throughput +
1/DeluxeTransactionServer.deposit.QoS.throughput +
1/AccountDatabase.getAccount.QoS.throughput +
1/AccountDatabase.saveA ccount.QoS.throughput

...(continuing description of rules for throughput for the rest of the use cases shown above

1.2) QoS Composition Rules for endToEndDel ay

2) QoS Decomposition Model

2.1) QoS Decomposition Rules for throughput
CashierTerminal.deposit. QoS.throughput > System.QoS.throughput
CashierTerminal.withdraw.QoS.throughput > System.QoS.throughput
CashierTerminal.transfer.QoS.throughput > System.QoS.throughput
DeluxeTransactionServer.deposit. QoS.throughput > System.QoS.throughput
DeluxeTransactionServer.withdraw.QoS.throughput > System.QoS.throughput
DeluxeTransactionServer.transfer.QoS.throughput > System.QoS.throughput
AccountDatabase.getAccount. QoS.throughput > System.QoS.throughput
AccountDatabase.saveA ccount.QoS.throughput > System.QoS.throughput

2.2) QoS Decomposition Rules for endToEndDelay

e CriticaUseCaseModel 2

e CriticaUseCaseModel3

4.4.3.3.3 QoS Composition and Decomposition Model (QCDM)

This model describes the QoS composition and decomposition rules for each
required QoS parameter for each critical use case. These rules form the QoS Composition
and Decomposition Model (QCDM). The QCDM for each critical use case consists of

66

two models: QoS Composition Model and QoS Decomposition Model. The statements in
the QoS Composition Model are arranged in a“hierarchical form”, i.e., the first statement
expresses the formula for calculating the value for a QoS parameter. The rest of the
statements express how to calculate the values of variables in the right hand side of the
first statement. The QoS Decomposition Model consists of statements for deriving QoS
parameters for each function call for a component involved in the critical use cases. The
format of this section is alisting of QCDM for each critical use case in the Critical Use
Case Model. Table 4.20 is an excerpt of QCDM from the banking domain which also
shows the template for documenting this model. The complete example can be found in
Appendix G and the description can be found in Section 5.3.10.

This chapter describes the contents of the UGDM and the UDSL for modeling and
describing a UGDM in the USGPF. The UGDM is important for representing a DCS
family, including the QoS aspect. As the UGDM becomes more comprehensive, more
models may be included, for example, Event Grammar Model [AUG95, AUG97] for
describing the system behavior. Next chapter presents the UniFrame UGDM
Development Process (UGDP) which is a process for creating such a UGDM for a
distributed computing domain.

67

5 The UNIFRAME UGDM DEVELOPMENT PROCESS (UGDP)

Chapter 4 gives the detailed description on the UGDM. This chapter provides the
UniFrame UGDM Development Process (UGDP), which is for creating the UGDM for a
selected domain. The UGDP is the second part of the UniFrame System-Level
Generative Programming Framework (USGPF). The UGDP covers the generative
domain engineering of the UA. It is a use-case-driven, architecture-centric and iterative
process. Of critical importance is that the UGDP must be domain-independent;
repeatability across multiple domains is an essential requirement. A banking domain
example is completely developed throughout this chapter to demonstrate the UGDP and
isalso used to test validity of the proposed USGPF.

5.1 Overview of the UGDP
The outline of the UGDP is shown in Table 5.1. The UGDP consists of three

phases. Domain Analysis, Domain Design and Ordering DS Design. The Domain

Analysis phase involves Domain Definition and Domain Modeling. This phase is similar
to the Domain Analysis in DEMRAL. The purpose of Domain Definition is to establish
the domain scope based on the analysis of stakeholders, their goals and existing systems.
The purpose of Domain Modeling is to model the contents of the domain by finding the
relevant domain concepts and modeling their features. In Domain Modeling, both the
functiona and QoS requirements are identified. In the Domain Design phase the common
layered architecture for a DCS family is developed as well as various QoS related
models. In the phase of Ordering DSL Design, ordering schemes are designed so that
application engineers or system assemblers can order a DCS by supply system

68

requirements. This ordering language can be textual, tabular, or graphic. It can also be

supported by natural language processing.

Table 5.1 Outline of the UGDP

The UniFrame UGDM Devel opment Process (UGDP)

1. Domain Analysis
1.1 Domain Definition
1.1.1 Domain Description
1.1.2 Domain Scoping and Context Analysis
1.2 Domain Modeling
1.2.1 Modeling Domain Functional Requirements
1.2.2 Identifying and Modeling Domain Key Concepts
1.2.3 Identifying and Modeling Domain QoS Requirements
2. Domain Design
2.1 Designing Layered Architecture
2.2 Creating Component Diagrams
2.3 Creating Sequence Diagrams
2.4 Refining Critical Use Case Model to Abstract Component L evel
2.5 Identifying Component Interfaces and Communication Patterns
2.6 Refining Critical Use Case Model to Function/Interface Level
2.7 Refining Architecture Model in Disjunctive Normal Form from Component Level to
Function/Interface Level
2.8 Mapping Architecture Model in Disjunctive Normal Form to Critical Use Case Model
(Function/Interface Level)
2.9 Creating Abstract Component Model
2.10 Creating QoS Composition and Decomposition Model
3. Ordering Language Design

The details of the process are described in next sections. Each step in the process
is further illustrated through a banking domain example. The outcome of this exampleis
the UGDM presented Appendix I.

5.2 Domain Analysis

Domain in the UniFrame Approach refers to industry specific markets such as
Financial Services, Health Care Services and Manufacturing Services. Domain analysis
involves two main activities: Domain Definition and Domain Modeling. The purpose of
Domain Definition is to establish the domain scope based on the analysis of stakeholders,

69

their goals, and existing systems. The purpose of Domain Modeling is to model the
contents of the domain by finding the relevant domain concepts and modeling their
features. At the beginning of Domain Analysis, establish a domain dictionary and a
register of domain knowledge sources. Domain dictionary includes definitions of domain
features and concepts. Domain knowledge sources are references to the literature,
manuals, and domain experts consulted during domain analysis. This information is
updated as the process going on.

5.2.1 Domain Definition
Domain Definition involves Domain Description, and Domain Scoping and
Context Analysis. The first activity of Domain Definition is to identify stakeholders and
their goals. The next activity is to determine the scope and characterize the contents of
the domain.

5.2.1.1 Domain Description

This step follows Varghese's work on the problem space of a variable domain
[VAROZ2]. The goal of this step isto obtain an initial understanding of the domain which
IS going to be modeled. This is important because it gives everyone involved an initial
understanding of what is going to be accomplished. This should begin with the
development of a problem statement. Although this may not be very detailed and well
defined at the beginning, it is important to document the overall goal at the beginning of
the domain engineering process. The next item to be produced is a genera description of
the capabilities that applications faling within this domain should possess. This should
include any desired properties of the system family that have not yet been captured in the
problem statement. The final item to be produced is alist of any existing applications that

would fall under the description of this domain.

70

Table 5.2 Domain Description for the Banking Domain Example

Domain Description

1. Problem Description
To create a banking system that is able to manage account activities.

2. Description of General Capabilities

The system should be able to process the basic account functions: create an account, delete an
account, query account balance, deposit money and withdraw money. The system may contain
different security features, including client security and server security. The system must meet the
QoS requirements. The domain includes interfaces for bank staff to manage accounts and may also
include interfaces (i.e. ATM) for customers to manage their accounts.

3. Domain Boundaries

This is a simple banking domain (version 1.0) to provide the basic personal account management.
Corporate account management is not considered. Advanced banking features, for example, loan
processing and credit card, are not supported.

4. Potential Sources of Information

1. Banking Staff — They have knowledge regarding required features and rules.

2. Application Engineers — May have applicable knowledge from past developments of
related applications. May also have knowledge regarding system requirements at various
sites.

3. Literature —May have formal definitions of key terms, example models, etc.

5. Potential Stakeholders and Experts
1. Senior Management
2. Project Leaders
3. Application Engineers
4. Bank Staffs

6. Related Domain
1. LoanDomain

The stakeholder analysisis a dynamic, social process, which may involve not only
identifying the key players for a domain, but also getting some important people or
organizations to be involved. These people may have oversight responsibilities or they
may be a resource for better understanding of the domain. For the banking domain
example, four groups of people were recognized as important stakeholders. Senior
management and project leadership were included to ensure that they remain aware of
ongoing progress. Application engineers are important as a source of information about
any previous projects that may be related to the current project. They will aso be the key
people later developing the software solution. Bank staffs are the end users of this

71

system. The study of the resources and meeting with the stakeholders will expand the
domain description, including defining the domain boundaries. The domain boundaries
state clearly what the application is going to be. A list of potential sources of information
is aso identified. Any relationships to other domains that can be identified also need to
be documented. This is also a source for gaining insight into the current domain. The
banking domain has alot of similarities to the loan domain. For example, in the banking
domain, customers have their accounts, they save money and get interest from a bank; in
the loan domain, customers also have their accounts; however, they borrow money, and
they pay loans and interests. The studying of the loan domain can provide useful input to
the banking domain. Table 5.2 shows the artifact of domain description for the banking

domain example.

5.2.1.2 Domain Scoping and Context Analysis

This is to determine the scope and characterize the contents of the domain by
defining its domain features. The domain features are obtained by anayzing the
application areas and markets of the systems in the domain and by analyzing the existing
systems.

By analyzing the domain description we derived, studying exemplar systems,
consulting domain experts, a use case model (UCM) is developed to formally define the
domain functionalities. Figure 5.1 demonstrates the use case model of the banking
domain example. Direct users of the system include cashiers and customers. An account
can only be accessed by one user a atime. Table 5.3 shows the description of the use
case model for the banking domain example. Table 5.4 shows an example of a domain
dictionary for the banking domain example. The table is a partial listing. The description
of the use case model is aso a part of the domain dictionary.

Use cases are most often described from an end-user point of view. For example,
with an automated teller machine (ATM), we might investigate use cases for the
customers such as DepositMoney, WithdrawMoney, TransferMoney, and CheckBalance,
etc.

72

O 0 O

CheckB'aj ance TransféfM oney
<<extend>> !

DepositMoney .. fWithdréwM oney

<<extend>> <<&tmd>> <<extend>>

i ManageAccounts
<<include>>

% O@Oi

OpenAccount cl osef‘ccount Customer

Login-exitAccount
<<extend>> <<extend>>

ManageCustomers

ValidateUsers

Figure 5.1 UCM for the Banking Domain Example

Table 5.3 Description of the UCM for the Banking Domain Example

Description of Use Case Model

ManageA ccounts: Common account activities, including depositing money, withdrawing money,
transferring money, and checking balance. Both cashiers and customers have activities of
ManageA ccounts.

DepositMoney: An activity of ManageA ccounts. Depositing certain amount of money into an account.

WithdrawMoney: An activity of ManageAccounts. Withdrawing certain amount of money from an
account.

TransferMoney: An activity of ManageAccounts. Transferring certain amount of money from one
account to another.

CheckBalance: An activity of ManageA ccounts. Checking the balance of an account.

ManageCustomers: Activities of opening an account or closing an account for a customer.
ManageCustomers is intended for cashiers only.

OpenAccount: An activity of ManageCustomers. Opening an account for a customer.

CloseAccount: An activity of ManageCustomers. Closing an account for a customer.

Login-exitAccount; An activity used by activities of ManageAccounts. The login process checks
whether the specified account exists, if it exists, locks the account so that other activities can
not access the account in order to ensure data integrity. The exit process unlocks an account so
that other activities can use the account.

ValidateUsers: Validating cashiers and customers before they can use a bank system. It is a password
checking process. The user name for a cashier is his’her user id. The user name for a customer
is hig’her account number.

73

Table 5.4 Domain Dictionary for the Banking Domain Example

Domain Dictionary
(partial listing)

Banking: domain for managing personal accounts.

Bank: An entity keeping accounts.

Cashier: Persons who manage personal accounts on behalf of customers.
Customer: Persons who owns accounts.

User: Cashier and Customer.

Account: An entity keeping the money belongs to a customer

5.2.2 Domain Modeling
Domain Modeling involves three activities: modeling the domain functional
requirements, identifying and modeling the domain key concepts, and identifying and

modeling the domain QoS requirements.

5.2.2.1 Modeling Domain Functional Requirements
The use case model (UCM) established above represents the functiona

requirements of a domain. However, the use case diagram cannot express the common
and variable functional properties which are the inherent characteristics of a DCS family.
For example, in the banking domain example, both cashiers and customers manage
accounts; however, a system might not provide this functionality for customers. The
variability can be easily modeled in afeature diagram. A feature diagram is a concise and
convenient way of defining a domain. It is used throughout the UGDP to document the
common and variable properties of different artifacts. The feature diagram shown in
Figure 5.2 captures the common and variable properties of the functional requirements
for the banking domain example, which is also expressed in the UDSL as shown in Table
5.5 with all the constraints that can not be expressed by the feature diagram.

UseCaseModel

ManageAccounts

OpenAccount | | CloseAccount |

ValidateUsers ValidateUsers
_Cashier _Customer

>~

| ManageAccounts_Customer |

Login-exitAccount

| ManageAccounts Cashier |

Login-exitAccount Login-exitAccount
_Cashier _Customer

74

WithdrawMoney DepositMoney TransferMoney CheckBalance
l _Customer _Customer _Customer _Customer
WithdrawMoney DepositMoney TransferMoney CheckBalance
_Cashier _Cashier _Cashier _Cashier

Figure 5.2 Feature Diagram of the UCM for the Banking Domain

Table 5.5 UCM inthe UDSL for the Banking Domain Example

Use Case Model

1. Commonality and Variation
Bank: all (ManageCustomers, ManageA ccounts, Login-exitAccount, ValidateUsers)
ManageCustomers: all (OpenAccount, CloseAccount)
ManageAccounts:. all (ManageAccounts Cashier, ManageAccounts Customer?)
ManageAccounts Cashier: al (WithdrawMoney Cashier, DepositMoney_Cashier,
TransferMoney_Cashier, CheckBalance Cashier)
ManageAccounts Customer: all (WithdrawMoney Customer, DepositMoney Customer,
TransferMoney_Customer, CheckBalance_Customer)
ValidateUsers: all (ValidateUsers Cashier, ValidateUsers Customer?)
Login-exitAccount: all (Login-exitAccount_Cashier, Login-exitAccount_Customer?)
2. Congtraint Expression
2.1 Default Constraint
default (ManageAccounts : ManageAccounts Cashier)
default (ValidateUsers : ValidateUsers Cashier)
default (Login-exitAccount : Login-exitAccount_Cashier)
2.2 Satisfaction Constraint
mutual_require (ValidateUsers Customer, ManageAccounts_Customer, Login-
exitAccount_Customer)

75

5.2.2.2 Identifying and Modeling Domain Key Concepts

Source of key concepts and features includes existing and potentia stakeholders,
domain experts and domain literature, existing systems, preexisting models (e.g., use case
models, object models), etc. Strategies for identifying features include both top-down
approaches and bottom up approaches. In the banking domain example, Account is
identified as a key concept. An Account has many common features, including Account
Number, Customer Name, Balance and Account Type. It may also have an Interest Rate,
depending on what type of Account it is. Figure 5.3 and Table 5.6 show the modeling of

the concept of Account that is used in the banking domain example.

AccountType | | InterestRate | | AccountNumber | | CustomerName

SavingAccount CheckinaAccount

Figure 5.3 Feature Diagram of Key Concepts for the Banking Domain Example

Table 5.6 Key Concepts in the UDSL for the Banking Domain Example

Key Conceptsinthe UDSL

1. Commonality and Variation
Account: all (AccountType, InterestRate?, AccountNubmer, CustomerName, Balance)
AccountType: one-of (SavingAccount, CheckingAccount)

2. Constraint Expression
2.1 Satisfaction Constraint
require (SavingAccount, I nterestRate)
reject (CheckingAccount, InterestRate)

76

5.2.2.3 Identifying and Modeling Domain QoS Requirements

QoS is an inherent characteristic of the UniFrame. It is important to identify and
model the domain QoS requirements in order to build QoS-aware DCS. There are two
steps to do so. Firstly, consult the QoS catalog and domain experts to identify the key
QoS parameters for evaluating or monitoring the system. Secondly, identify the critical
use cases in the system. The critical use cases are a subset of the use cases identified for a
domain. The evauation and monitor of the QoS parameters on these critical use cases can
represent the QoS parameters of the system. The use of critical use case in QoS
evaluation and monitoring can make the process simpler and more effective. The
outcome of this step is two models: the QoS requirement model (QRM) and the critical
use case model (CUCM).

| System_throughput | | System_endToEndDelay |

Figure 5.4 QRM for the Banking Domain Example

CriticalUseCaseModel
WithdrawMoney DepositMoney TransferMoney
_Cashier _Cashier _Cashier

Figure 5.5 CUCM for the Banking Domain Example

Suppose the analysis of the QoS criteria reveals that throughput and
endToEndDelay are the two critical QoS features that are needed in banking systems and

77

are the two standard measurements for the system performance. Suppose DepositMoney,
WithdrawMoney and TransferMoney of cashiers are the critica use cases of bank
systems. There are four ways to represent the system QoS from the critical use case QoS:
minimal QoS of the critical use cases, maxima QoS of the critical use cases, a
customized expression (one specia case is taking the average), or providing QoS of all
the critical use cases. For the first three ways, each system QoS parameter is expressed as
one value. For the last one, each system QoS parameter is expressed as a set of values on
different critical use cases. In the banking domain example, the minimal QoS value is
adopted for throughput, and the maximal QoS value is adopted for endToEndDelay.
Figure 5.4 and Figure 5.5 show the QoS requirement model and the critical use case
model for the banking domain example respectively. Table 5.7 and Table 5.8 show these
modelsin the UDSL respectively.

Table 5.7 QRM in the UDSL for the Banking Domain Example

QoS Requirement Model (QRM) in the UDSL

SystemQoS: all (System throughput, System endToEndDelay)

Table 5.8 CUCM inthe UDSL for the Banking Domain Example

Critical Use Case Model (CUCM) inthe UDSL

CriticalUseCaseModel: all (WithdrawMoney Cashier, DepositMoney_Cashier,
TransferMoney Cashier)

5.3 Domain Design

The goal of Domain Design is to develop the layered architecture for a DCS
family as well as various QoS related models. The architectura view of a design model
presents the most architecturally important classifiers of the design model: the most
important subsystems, interfaces, as well as a few very important classes, primarily the

active classes. It also presents how the most important use cases are realized in terms of

78

these classifiers. There are different definitions of software architecture. Following are
the two popular definitions.

Shaw and Garlan [SHA96] define software architecture as follows. Abstractly,
software architecture involves the description of elements from which systems are built,
interactions among those elements, patterns that guide their composition, and constraints
on these patterns. In general, a particular system is defined in terms of a collection of
components and interactions among these components. Such a system may in turn be
used as a (composite) element in alarger system design.

Buschmann et al. [BUS96] offer another definition of software architecture. A
software architecture is a description of the subsystems and components of a software
system and the relationship among them. Subsystems and components are typically
specified in different views to show the relevant functional and nonfunctional properties
of a software system. The software architecture of a system is an artifact. It is the result
of the software development activity.

The architecture developed in the UGDP follows both definitions above. The
architectural design of a system is a high-level design. The goal is to come up with a
flexible structure which supports structural variation in its topology. This kind of
architecture satisfies all important requirements and still leaves alarge degree of freedom
for the implementation. As a design rule, use the most stable parts of a DCS family to
form the “skeleton” and make the rest flexible and easy to evolve and maintain. But even
the skeleton has to be modified sometimes, especialy when a UGDM has not reached its
maturity.

5.3.1 Designing Common Layered Architecture
The development of a common architecture for a family of systems is a critical
step. This architecture indicates the commonality and variability. Designing the
architecture is an iterative process. It requires anayzing the requirement model and the
design of existing systems and meeting with persons who have built many systems for
different customers in the same problem area. It usually needs prototyping.

79

Buschmann et al. summarized a list of architectura patterns in [BUS96]: layers
pattern, pipes and filters pattern, blackboard pattern, broker pattern, model-view-
controller pattern, and microkernel pattern. The advantage of the layers pattern is the
modularization of a system. When a layer is modified, it has the minimal impact on the
overal system structure. This makes the refinement and maintenance of an architecture
easier and less error prone.

In the UniFrame, a layering pattern is adopted for the system architecture. This
layering is achieved by decomposing tasks into groups of subtasks, in which each group
of subtasksisat aparticular level of abstraction.

The process of designing a common layered architecture for a family of systems
involves answering questions such as what kinds of subsystems and/or abstract
components are needed to meet certain functional or nonfunctiona requirements, how
these subsystem and/or abstract components are connected, what are the constraints, what
kind of middleware or component model will be used, what interfaces the abstract
components will have, how they will accommodate the requirements, etc. The process
typically begins by looking at a few use cases, creating use case realizations for them,
and identifying the roles for the design features. Then do the same for other use cases. As
the work continues we should be able to identify the design features and design variations
that are needed for designing a common layered architecture.

There are three categories of design features. system, subsystem and abstract
component. The top root of the feature diagram of a layered architecture is a system
design feature, which is denoted by its name surrounded by <>. The leaves of a design
feature diagram are abstract components, which are denoted by their names surrounded
by []. The other nodes in the design feature diagrams are subsystems, which are denoted
by their names surrounded by (). The subsystems are the aggregation of subsystems and/or
abstract components. The abstract components are atomic features and the subsystems
are composite features. The abstract components will be realized in the component

engineering stage.

80

For the banking domain example, suppose the analysis shows the need for a user
subsystem to accept requests from users (cashiers and customers), a transaction
subsystem for carrying out account and customer management, and a user validation
subsystem. The user subsystem passes the requests to the user validation subsystem and
the transaction subsystem. The account and customer management use cases are realized
by the user subsystem and the transaction subsystem. The user validation use case is
realized by the user subsystem and the user validation subsystem. The user validation
subsystem should be able to validate both cashiers and customers of a bank. The design at
this first layer is documented as Architecture Model in Hierarchica Form (AMHM) in
Figure 5.6, Design Feature Interaction Model (DFIM) in Figure 5.7, constraints in Table
5.9 and design feature description in Table 5.10. In the DFIM, the notation “1” indicates

the design feature that initiates the interaction between the two associated design features.

(Transaction (UserValiation
Subsystem) Subsystem)

Figure 5.6 Feature Diagram of AMHF for the Banking
Domain Example (Layer 1)

Transaction
Subsystem

UserSubsystem

| UserValidation
Subsystem

Figure 5.7 DFIM for the Banking Domain Example (Layer 1)

81

Table 5.9 Constraintsin the UDSL for the
Banking Domain Example (Layer 1)

Constraints in the UDSL

1. Multiplicity Constraint
multiplicity ((Bank, UserSubsystem) : 1)
multiplicity ((Bank, TransactionSubsystem) : 1)
multiplicity ((Bank, UserValidationSubsystem) : 1)

2. Default Constraint
NONE

3. Satisfaction Constraint
NONE

Table 5.10 Design Feature Description
for the Banking Domain Example (Layer 1)

Design Feature Description

1. System
Bank: Provide basic account management and transaction services.

2. SubSystem
UserSubsystem: Interact with users.
UserValidationSubsystem: Validate a user before the user can use
the system.
TransactionSubsystem: Perform transactions.

3. Abstract Component
NONE

In order to meet the possible different levels of the QoS requirements and the
financial affordability of different bank corporations, multiple transaction subsystems are
designed. Suppose an economic transaction subsystem with a single server and a deluxe
transaction subsystem with multiple servers with dedicated functionalities are designed.
For the user subsystem, customer and cashier have different need for using the system. A
customer only needs to manage his’her accounts. A cashier needs not only to manage
customers accounts, but also to manage customers. For the user validation subsystem,

separate abstract components are designed to validate cashiers and customers

82

respectively. The outcome of this second layer is shown in Figure 5.8, Figure 5.9, Table
5.11 and Table 5.12.

(UserValiation
(UserSubsystem) Subsystem)
[Cashier [Customer [Cashier
Terminal] ValidationServer] ValidationServer]

(Transaction
Subsystem)

(EconomicTransaction (DeluxeTransaction [Transaction
Subsystem) Subsystem) ServerManager]

Figure 5.8 Feature Diagram of AMHF for the
Banking Domain Example (Layer 2)

________________ TransactionSubsystem
UserSubsystem . _
EconomicTransaction
Cashier Subsystem
Terminal

TransactionSubsystem

ATM

TransactionServer
Manger

Deluxe i

i UserSubsystem i ! UserValidationSubsystem !
' | Cashier ! ! ———— :
i Termlinal I : : I CashierValidationServer | i
i ATM H : 1 customerValidationServer |§

Figure 5.9 DFIM for the Banking Domain Example (Layer 2)

83

Table 5.11 Constraintsin the UDSL for the Banking Domain Example (Layer 2)

Constraintsin the UDSL

1. Multiplicity Constraint
multiplicity ((UserSubsystem, CashierTerminal) : 1..*))
multiplicity ((UserSubsystem, ATM) : 0..%))
multiplicity ((UserValidationSubsystem, CustomerValidationServer): 0..1))
multiplicity ((UserValidationSubsystem, CashierValidationServer) : 1))
multiplicity ((TransactionSubsystem, EconomicTransactionSubsystem) : 1..2))
multiplicity ((TransactionSubsystem, DeluxeT ransactionSubsystem) : 1..2))
multiplicity ((TransactionSubsystem, TransactionServerManager) : 1))

2. Default Constraint
default (UserSubsystem : CashierTerminal)
default (UserValidationSubsystem : CashierValidationServer)
default (TransactionSubsystem : all (TransactionServerManager,
EconomicT ransactionSubsystem))

3. Satisfaction Constraint
mutual_require (ATM, CustomerV aliationServer)

Table 5.12 Design Feature Description for the Banking Domain Example (Layer 2)

Design Feature Description

1. System
NONE

2. SubSystem
EconomicTransactionSubsystem: provide account transaction service with low performance.
DeluxeTransactionSubssytem: provide account transaction service with high performance.

3. Abstract Component

CashierTerminal: interact with cashiers. Provide both account management and account
transaction service.

ATM: interact with customers. Provide only account transaction service.

TransactionServerManager: Keep alist of account numbers and servers on which the
accounts are stored.

CustomerV alidationServer: provide customer validation service for ATM.

CashierValidationServer: provide cashier validation service for CashierTerminal.

The third layer of the banking domain example is the design for the economic
transaction subsystem and the deluxe transaction subsystem. The outcome is shown in
Figure 5.10, Figure 5.11, Table 5.13 and Table 5.14. When all the leaves in the layered

architecture are abstract components, the design reaches the bottom.

(EconomicTransaction (DeluxeTransaction
Subsystem) Subsystem)

[Econom_ic [Delux [Account
Ts(r*ansacuon Transaction Database]
ver] Server]

Figure 5.10 Feature Diagram of AMHF for the
Banking Domain Example (Layer 3)

________________ i Subsystem i
! UserSubsystem i : Deluxe :
.| Cashier |1 : gra\r/‘efm'o” :
i | Terminal : : !
: 1 1 | :
: i ' | AccountDatabase i

i UserSubsystem | i EconomicTransaction |
| | i Subsystem |
| Cashier I ! |
| Terminal : : Economic i
! ! , Transaction !
' ! : Server !

Figure 5.11 DFIM for the Banking Domain Example (Layer 3)

Table 5.13 Constraintsin the UDSL for the Banking Example (Layer 3)

Constraintsin the UDSL

1. Multiplicity Constraint
multiplicity ((EconomicTransactionSubsystem, EconomicTransactionServer) : 1)
multiplicity ((DeluxeTransactionSubsystem, DeluxeT ransactionServer) : 1)
multiplicity ((DeluxeTransactionSubsystem, AccountDatabase) : 1)

2. Default Constraint
NONE

3. Satisfaction Constraint
NONE

85

Table 5.14 Design Feature Description
for the Banking Domain Example (Layer 3)

Design Feature Description

1. System
NONE

2. SubSystem
NONE

3. Abstract Component

EconomicTransactionServer: provide account transaction service with low performance.
DeluxeTransactionServer: provide account transaction service with high performance.
AccountDatabase: provide account storage.

(UserValiation

(UserSubsystem)

Subsystem)
(Transaction
Subsystem)
%’E‘?rsn}}fg\l] [Customer [Cashier
ValidationServer] ValidationServer]

(EconomicTransaction (DeluxeTransaction
Subsystem) Subsystem)

[Transaction
ServerManager]

[Delux
Transaction
Server]

[Account

[Economic Dt)

Transaction
Server]

Figure 5.12 Feature Diagram of AMHF for the Banking Domain Example

Put al the increments from each layer together to derive the feature diagram of
Architecture Model in Hierarchical Form (AMHF) for the banking domain example as
shown in Figure 5.12, constraint as shown in Table 5.15, Design Feature Interaction
Mode (DFIM) in Figure 5.13, and design feature description in Table 5.16. From the
banking domain example, we can see that one concept in the requirement model can be

mapped to one abstract component, or mapped to a set of abstract components that form a
subsystem.

Table 5.15 Constraintsin the UDSL for the Banking Example

Constraints

1. Multiplicity Constraint
multiplicity ((Bank,UserSubsystem): 1)
multiplicity ((Bank, TransactionSubsystem) : 1)
multiplicity ((Bank, UserValidationSubsystem) : 1)
multiplicity ((UserSubsystem, CashierTerminal) :1..*)
multiplicity ((UserSubsystem, ATM) : 0..*)
multiplicity ((UserValidationSubsystem, CustomerValidationServer): 0..1)
multiplicity ((UserValidationSubsystem, CashierValidationServer) : 1)
multiplicity ((TransactionSubsystem, EconomicTransactionSubsystem) : 1..2)
multiplicity ((TransactionSubsystem, DeluxeT ransactionSubsystem) : (1..2)
multiplicity ((T ransactionSubsystem, TransactionServerManager) : 1)
multiplicity ((EconomicTransactionSubsystem, EconomicTransactionServer) : 1)
multiplicity ((DeluxeTransactionSubsystem, DeluxeTransactionServer) : 1)
multiplicity ((DeluxeTransactionSubsystem, AccountDatabase) : 1)

2. Default Constraint
default (UserSubsystem : CashierTerminal)
default (UserValidationSubsystem : CashierValidationServer)
default (TransactionSubsystem : all (TransactionServerManager,
EconomicT ransactionSubsystem))

3. Satisfaction Constraint
mutual_require (ATM, CustomerV aliationServer)

i <Bank> |
i i (TransactionSubSystem) o
I R T ety A (EconomicTransactionSubsystem) ! !
i1 (Uservalidation ! :(UserSubsystem) o : '
; Subsysem) i i 1! | [EconomicTransactionServer] | L
L1 | [cashier | 1 : B A
i 1 | validation ——1! [Cashier Y b
- L1 | Termind] | ! ; o
v | Server] o . | (DeluxeTransactionSubsystem) | 1
i1 [[customer Lo i N [Deluxe || [Account | »
| 1| validation |11 [ATM] KT\ | | Lrensaction Datebase] 1 1 |
i 1| Server] Lo N | [Server L

Figure 5.13 DFIM for the Banking Domain Example

Table 5.16 Design Feature Description for the Banking Example

Design Feature Description

1. System
Bank: Provide basic account management and transaction services.

2. SubSystem

UserSubsystem: Interact with users.

UserValidationSubsystem: Validate a user before the user can use the
system.

TransactionSubsystem: Perform transactions.

EcnomicT ransactionSubsystem: provide account transaction service with
low performance.

DeluxeT ransactionSubssytem: provide account transaction service with
high performance.

3. Abstract Component

CashierTerminal: interact with cashiers. Provide both account
management and account transaction service.

ATM: interact with customers. Provide only account transaction service.

ServerManager: Keep alist of account numbers and servers on which the
accounts are stored.

CustomerValidationServer: provide customer validation service for ATM.

CashierValidationServer: provide cashier validation service for
CashierTerminal.

EconomicTransactionServer: provide account transaction service with low
performance.

DeluxeTransactionServer: provide account transaction service with high
performance.

AccountDatabase: provide account storage for DeluxeTransactionServer.

CustomerV alidationServer: provide customer validation service for ATM.

CashierValidationServer: provide cashier validation service for
CashierTerminal.

Table5.17 AMHF in the UDSL for the Banking Domain Example

Architecture Model in Hierarchical Form

Bank: all (UserSubsystem, UserValidationSubsystem, TransactionSubsystem)
UserSubsystem: al (ATM?, CashierTerminal)
UserValidationSubsystem: all (CustomerValidationServer?,
CashierValidationServer)
TransactionSubsystem: all (TransactionServerManager, one-of
(EconomicT ransactionSubsystem, DeluxeT ransactionSubsystem))
EconomicTransactionSubsystem: EconomicTransactionServer
DeluxeTransactionSubsystem: all (DeluxeT ransactionServer, AccountDatabase)

87

Table5.18 ACIM in the UDSL for the Banking
Domain Example

Abstract Component Interaction Model

interact (CashierTerminal, CashierValidationServer)
interact (ATM, CustomerV aliationServer)

interact (CashierTerminal, TransactionServerM anager)
interact (CashierTerminal, EconomicTransactionServer)
interact (CashierTerminal, DeluxeTransactionServer)
interact (ATM, TransactionServerManager)

interact (ATM, EconomicTransactionServer)

interact (ATM, DeluxeT ransactionServer)

interact (DeluxeT ransactionServer, AccountDatabase)

Table5.19 MMSL inthe UDSL for the
Banking Domain Example

System-Level Multiplicity Model

multiplicity ((Bank, CashierTerminal): 1..*)
multiplicity ((Bank, ATM) : 0..%)

multiplicity ((Bank, CashierValidationServer) : 1)
multiplicity ((Bank, CustomerValidationServer) : 0..1)
multiplicity ((Bank, TransactionServerManager) : 1)
multiplicity ((Bank, EconomicTransactionServer) : 0..2)
multiplicity ((Bank, DeluxeTransactionServer) : 0..2)
multiplicity ((Bank, AccountDatabase) : 0..2)

Table 5.20 MMCL inthe UDSL for the Banking Example

Component-level Multiplicity Model

multiplicity ((CashierValidationServer, CashierTerminal) : 1..*)
multiplicity ((CustomerValiationServer, ATM) : 1..%)

multiplicity ((TransactionServerManager, CashierTerminal) : 1..*)
multiplicity ((EconomicTransactionServer, CashierTerminal) : 1..*)
multiplicity ((DeluxeTransactionServer, CashierTerminal) : 1..*)
multiplicity ((TransactionServerManager, ATM) : 1..*)

multiplicity ((EconomicTransactionServer, ATM) : 1..*%)
multiplicity ((DeluxeTransactionServer, ATM) : 1..%)

multiplicity ((DeluxeTransactionServer, AccountDatabase) : 1)

88

89

The feature diagram of the Architecture Model in Hierarchical Form shown in
Figure 5.12 can be expressed in the UDSL as shown in Table 5.17. The abstract
component interaction model (ACIM) can be derived from Figure 5.13. The ACIM
consists of only abstract components. The ACIM in the UDSL for the banking domain
exampleisshownin Table 5.18.

From the multiplicity constraints and the abstract component interaction model,
derive the System-Level Multiplicity Mode (MMSL) and the Component-Level
Multiplicity Model (MMCL). The MMSL expresses the multiplicity of the root feature (a
system) in terms of the leaves (abstract components). The MMCL expresses the
multiplicity of each pair of interaction components. The method for deriving these two
artifacts is a series of substitutions using the multiplicity constraints and the abstract
component interaction model. Table 5.19 and 5.20 show these two artifacts for the

banking domain example.

5.3.2 Creating Component Diagrams

From the AMHL, a normalized architecture model, i.e., Architecture Model in
Normalized Form (AMNF), which consists of only abstract components can be derived.
The AMNF for the banking domain example is shown in Table 5.21. The AMNF can
then be transformed into digunctive normal form, i.e., architecture model in disunctive
norma form (AMDNF). The AMDNEF for the banking domain example is shown in
Table 5.22. Each digunctive normal form at the abstract component level represents one
possible architecture instance. When looking at the communication pattern level, each
disunctive norma form at abstract component level may represent multiple system
instances as revealed later in the process. The satisfaction constraints are used in the
transformation process of architectures. Details of how to do the transformations between
different forms of architecture model is discussed in Section 4.2.3.

For each digunctive normal form at the abstract component level, there is a
component diagram, which shows a set of components and their relationships.

Component diagrams are used to illustrate the static implementation view of a system

90

architecture. Component diagrams can be derived intuitively from the design feature
interaction model and the component-level multiplicity model. Figure 5.14 shows the
component diagram for BankCasel, one case in the AMNF for the banking domain

example. A complete list of al component diagramsisin Appendix B.

Table5.21 AMNF in the UDSL for the Banking Domain Example

Architecture Model in Normalized Form

1. Commonality and Variation
Bank: al (all (ATM?, CashierTerminal), all (CustomerValidationServer?,
CashierValidationServer), all (TransactionServerManager, one-of
(EconomicTransactionServer, all (DeluxeTransactionServer, AccountDatabase))))

2. Constraint Expression
2.1 Default Constraint
default (Bank : all (CashierTerminal, CashierValidationServer,
TransactionServerManager, EconomicTransactionSubsystem))
2.2 Sdtifaction Congtraint
mutual_require (ATM, CustomerV alidationServer)

Table 5.22 Architecture Model in Disunctive Normal Form (Abstract
Component Level) in the UDSL for the Bank Example (4 digunctives)

Architecture Model in Digunctive Normal Form (Abstract Component Level)

1. Digunctive Normal Form
Bank: one-of (BankCasel, BankCase?, BankCase3, BankCase4)

BankCasel: al (ATM, CashierTerminal, CustomerV alidationServer,
CashierValidationServer, TransactionServerManager,
EconomicTransactionServer)

BankCase2: al (ATM, CashierTerminal, CustomerV alidationServer,
CashierValidationServer, TransactionServerManager,
DeluxeT ransactionServer, AccountDatabase)

BankCase3: al (CashierTerminal, CashierValidationServer,
TransactionServerManager, EconomicTransactionServer)

BankCase4: al (CashierTerminal, CashierValidationServer,
TransactionServerManager, DeluxeTransactionServer,
AccountDatabase)

2. Congtraint Expression
2.1 Default Constraint
default (Bank : BankCase3)

91

1 1.*
[Cashier - -
% ValidationServer] [CashierTerminal]
1.*

1.*

[Economic
Transaction
Server]

1

[Transaction
ServerManager]

1

[Customer
ValidationServer]

Figure 5.14 Component Diagram of BankCasel for Banking Domain

5.3.3 Creating Sequence Diagrams

Sequence diagram is good for showing how use cases are carried out by
appropriate components. Create one or more sequence diagrams to show how the
autonomous components in the system interact with each other and with users. At least
one sequence diagram should be created for each use case identified. It is possible there
are variations in realizing a use case and there may be multiple ways to realize a use case
as this is inherent in the development of a DCS family. In such a situation, a separate
sequence diagram should be created for each alternative. During the creation of the
sequence diagrams for each use case, also design the communication patterns of the
function calls between components. A communication pattern shows the characteristic of
paralelism of a function. The basic communication patterns include one-way, two-way-
synchronous and two-way-asynchronous, which are discussed in Chapter 4. The
information about communication patterns is not shown in the sequence diagram, but is
summarized in the function summary of abstract components in Section 5.3.5. Figure
5.15 shows the sequence diagram of the Deposit Money use case for a cashier when
EconomicTransactionServer is involved. A complete list of sequence diagrams is in

Appendix C.

92

Cashier ‘CashierTerminal | ‘TransactionServerManager | | :EconomicTransactionServer

Enter account number
and account type

Transaction Server 1D := loainAccount()

[

Login account successfully

Enter deposit amount deposit()

Deposit done successfully

Exit account exitAccount()

Exit account successfullv

Figure 5.15 Sequence Diagram of Deposit Money (Case 1)

Table 5.23 CUCM at the Abstract Component Level inthe UDSL
for the Banking Domain Example

Critical Use Case Model at the Abstract Component Level

1. Commonality and Variation
CriticalUseCaseModel: all (DepositMoney_Cashier, WithdrawMoney Cashier,
TransferMoney_Cashier)

DepositMoney_Cashier: one-of (DepositMoneyCasel, DepositM oneyCase?)

DepositMoneyCasel: path_c (CashierTerminal, DeluxeT ransactionServer,
AccountDatabase)

DepositMoneyCase2: path_c (CashierTerminal, EconomicTransactionServer)

WithdrawMoney Cashier: one-of (WithdrawMoneyCasel, WithdrawM oneyCase2)

WithdrawMoneyCasel: path_c (CashierTerminal, DeluxeT ransactionServer,
AccountDatabase)

WithdrawMoneyCase2: path _c (CashierTerminal, EconomicTransactionServer)

TransferMoney_Cashier: one-of (TransferMoneyCasel, TransferMoneyCase?)

TransferMoneyCasel: path_c (CashierTerminal, DeluxeTransactionServer,
AccountDatabase)

TransferMoneyCase2: path_c (CashierTerminal, EconomicTransactionServer)

2. Congtraint Expresssion

2.1 Default Constraint
default (DepositMoney_Cashier : DepositMoneyCase2)
default (WithdrawMoney_Cashier : WithdrawM oneyCase2)
default (TransferMoney_Cashier : TransferMoneyCase2)

2.2 Satisfaction Constraint
mutual_require (DepositMoneyCasel, WithdrawM oneyCasel, TransferMoneyCasel)
mutual_require (DepositM oneyCase?, WithdrawM oneyCase?, TransferMoneyCase?)

93

5.3.4 Refining Critical Use Case Model to Abstract Component Level
From the sequence diagram and component diagram, summarize the
communication path for each critical use case to refine the Critical Use Case Model
CUCM) shown in Figure 5.5 and Table 5.8 to the abstract component level as shown in
Table5.23.

5.3.5 Identifying Component Interfaces and Communication Patterns

For each abstract component, two kinds of interfaces need to be identified,
required interfaces and provided interfaces. The provided interfaces are those interfaces
provided by a design feature to other design features. The required interfaces are those
interfaces required by this design feature from other design features. In order to identify
these interfaces, the first thing in this step is to summarize the actions, inputs and outputs
of each component from the sequence diagrams for each abstract component. Table 5.24
shows an example of the summarization for the TransactionServerManger. A complete
list of al summariesisin Appendix D.

The next step is to derive interfaces. This is the process of grouping related
functions across abstract components. The procedure is based on the summary of actions,
inputs and outputs for abstract components. Reference to the use case model and
requirement model in the domain analysis stage is a'so a great help to derive meaningful
interfaces. Each interface is documented in an interface description table, which consists
of the precondition, postcondition, invariant, communication pattern, and description for
each function in the interface. It also consists of variation of the interface. For this work,
the variation is caused solely by the communication patterns. Communication patterns
considered in this work include: one-way, two-way-synchronous and two-way-
asynchronous, which are denoted as cpl, cp2s and cp2a, respectively. All these interfaces
form the Interface Model. From the Interface Model, summarize the provided interfaces
and required interfaces for each abstract component. The whole process is iterative and

incremental, and usually needs prototyping.

94

Table 5.24 Function Summary for TransactionManager
in the Banking Domain Example

TransactionServerM anager
Actions Inputs Outputs Communication Pattern
loginAccount | Account Number, Account Type | Transaction Server ID | two-way-synchronous
exitAccount | Account Number, Account Type | NONE two-way-synchronous
openAccount | Account Number, Account Type | Account Number, two-way-synchronous
Account Type

Transaction Server |D

closeAccount | Account Number, Account Type | Transaction Server ID | two-way-synchronous

Table5.25 Interface Description for | AccountDatabase
in the Banking Domain Example

1. Syntax

Account getAccount(String accountNumber, int accountType);
Pre: values have been provided for the accountNumber and accountType.
Post: if the specified account exits, return the account; otherwise return NULL.
Invariant: accountNumber, accountType
Communication Pattern: cp2s or cp2a
Description: This function returns an account object asidentified by the parameters. It

void saveAccount(Account account);

void removeAccount(String accountNumber, int accountType);

2. Varidtion

| AccountDatabase: one-of (IAccountDatabaseCasel, | AccountDatabaseCase?)
| AccountDatabaseCasel: { cp2s}

| AccountDatabaseCase?: { cp2a}

3. Default Constraint
default (1AccountDatabase : | AccountDatabaseCasel)

| AccountDatabase

returns null if the account specified does not exist.

Pre: account isvalid

Post: the database has been updated appropriately.

Invariant: account

Communication Pattern; cp2s or cp2a

Description: This function updates the account if it already exists; otherwise it adds an
entry in the database for this new account.

Pre: values have been provided for the account and accountType

Post: the account specified is removed and the database has been updated appropriately

Invariant: accountNumber, accountType

Communication Pattern: cp2s or cp2a

Description: This function removes the specified account if it exists; otherwise it does
nothing.

95

For the banking domain example, following interfaces are identified to cover the
functionality in the requirement model: |Customer Management, 1AccountManagement,
| TransactionServer Manager, |AccountDatabase, and IUserValidation. Table 5.26 is an
example of an interface description. The expression, 1AccountDatabaseCasel: {cp2s},
means that all functions in |AccountDatabaseCasel are two-way-synchronous. A
complete list of all interface descriptions for the banking domain example isin Appendix
E. The provided interfaces and required interfaces for each abstract component are
summarized by consulting the sequence diagrams and are shown in Table 5.26, which is
actually a summary of the abstract components at the function/interface level. Table 5.26
can be expressed in the UDSL as shown in Table 5.27. Then it is expressed in digunctive
normal form in Table 5.28 and Table 5.29 with consideration of al the variations of
interfaces, which forms the Abstract Component Interface Model (ACIM) in the UGDM.

Table 5.26 Provided Interfaces and Required Interfaces of Abstract Components
for the Banking Domain Example

Abstract Components Provided Interface Required Interface
CashierTermina | CustomerM anagement | CustomerM anagement
| AccountM anagement | AccountM anagement
IValidation I TransactionServerM anager
IValidation
ATM | AccountM anagement | AccountM anagement
IValidation I TransactionServerM anager
IValidation
TransactionServerM anager | TransactionServerM anager NONE
EconomicTransactionServer | CustomerManagement NONE
| AccountM anagement
DeluxeT ransactionServer | CustomerManagement | AccountDatabase
| AccountM anagement
AccountDatabase | AccountDatabase NONE
CashierValidationServer IValidation NONE
CustomerV alidationServer IValidation NONE

Table 5.27 Abstract Components at Functional/Interface Level in UDSL for the
Banking Domain Example

96

Abstract Components at Functional/Interface Level

e Design Feature Expression
interface (CashierTerminal: provided interface (ICustomerManagement, | AccountM anagement,
IValidation), required_interface (ICustomerManagement, | AccountManagement,
| TransactionServerManager, |Validation))
interface (ATM: provided_interface (IAccountManagement, |Validation), required_interface
(IAccountManagement, 1 TransactionServerManager, |Validation))
interface (CashierValidationServer: provided_interface (IValidation), required_interface (NONE))
interface (CustomerV alidationServer: provided_interface (IValidation), required_interface (NONE))
interface (TransactionServerManager: provided_interface (I TransactionServerManager),
required_interface (NONE))
interface (EconomicTransactionServer: provided_interface (I AccountM anagement,
| CustomerManagement), required_inteface (NONE))
interface (DeluxeTransactionServer: provided_interface (1 AccountManagement,
| CustomerManagement), required_interface (IAccountDatabase))
interface (AccountDatabase: provided_interface (IAccountDatabase), required interface (NONE))

Table 5.28 ACIM in the UDSL for the Banking Domain Example

Abstract Component Interface Model
1. Digunctive Normal Form
CashierTerminal: CashierTerminal Casel
ATM: ATMCasel
CashierValidationServer: CashierValidationServerCasel
CustomerV alidationServer: CustomerV alidationServerCasel
TransactionServerManager: TransactionServerManagerCasel
EconomicTransactionServer: EconomicT ransactionServerCasel
DeluxeTransactionServer: one-of (DeluxeT ransaxtionServerCasel,
DeluxeT ransactionServerCase2)

AccountDatabase: one-of (AccountDatabaseCasel, AccountDatabaseCase?)

interface (CashierTerminal Casel: provided_interface (ICustomerManagementCasel,
| AccountM anagementCasel), required_interface (ICustomerManagementCasel,
| AccountManagementCasel, | TransactionServerManagerCasel, 1V alidationCasel))

interface (ATMCasel: provided_interface (I AccountManagementCasel), required_interface
(IAccountM anagementCasel, | TransactionServerM anagerCasel, | ValidationCasel))

interface (CashierValidationServerCasel: provided interface (IValidationCasel),
required_interface (NONE))

interface (CustomerValidationServerCasel: provided interface (IValidationCasel),
required_interface (NONE))

interface (TransactionServerManagerCasel: provided_interface
(ITransactionServerManagerCasel), required_interface (NONE))

interface (EconomicT ransactionServerCasel: provided interface (IAccountManagementCasel,
| CustomerManagementCasel), required_inteface (NONE))

interface (DeluxeTransaxtionServerCasel: provided interface (IAccountManagementCasel,
| CustomerManagementCasel), required_interface (| AccountDatabaseCasel))

(Continued in Table 5.29)

97

Table5.29 ACIM in the UDSL for the Banking Domain Example
(Continued from Table 5.28)

Abstract Component Interface Model

(Continued from Table 5.28)

interface (DeluxeTransactionServerCase2: provided interface
(IAccountM anagementCasel, | CustomerM anagementCasel), required_interface
(IAccountDatabaseCase?))

interface (AccountDatabaseCasel: provided_interface (IAccountDatabaseCasel),
required_interface (NONE))

interface (AccountDatabaseCase2: provided_interface (I AccountDatabaseCase?2),
required_interface (NONE))

2. Congtraint Expression

2.1 Default Constraint
default (DeluxeTransactionServer : DeluxeT ransactionServerCasel)
default (AccountDatabase : AccountDatabaseCasel)

2.2 Sdtisfaction Constraint
mutual_require (DeluxeTransactionServerCasel, AccountDatabaseCasel)
mutual_require (DeluxeT ransactionServerCase2, AccountDatabaseCase?)

Next, from the ACIM in Table 5.28 and Table 5.29, derive a mapping for an
abstract component from the component level to the function/interface level to impose

the default constraints. The mapping is shown in Table 5.30.

Table 5.30 Mapping of Abstract Component from Component Level to
Function/Interface Level in the UDSL for the Banking Domain Example

Mapping of Abstract Component from Component Level to Functional/Interface Level

map (CashierTerminal: CashierTerminal Casel)

map (ATM: ATMCasel)

map (CashierValidationServer: CashierValidationServerCasel)

map (CustomerV alidationServer: CustomerValidationServerCasel)
map (TransactionServerManager: TransactionServerManagerCasel)
map (EconomicTransactionServer: EconomicTransactionServerCasel)
map (DeluxeTransactionServer: DeluxeT ransaxtionServerCasel)

map (AccountDatabase: AccountDatabaseCasel)

5.3.6 Refining Critical Use Case Modél to Function/Interface Level
This step refines the critical use case model at the component level created in
Section 5.3.4 to the function/interface level by consulting the ACIM and the result is

98

shown in Table 5.31 and Table 5.32. At this level, each critical use caseis expressed as a
path of function calls. The communication for each function call is also stated. Section
4.2.2.4 has more information about this expression. The model at this level is crucia for
deriving the QoS Composition and Decomposition Model as described in Section 5.3.10.
Table 5.33 shows the normalized expression for the critical use case model at the
function/interface level. The digunctive normal form of this critical use case model in

Table 5.34 is derived from the normalized expression.

Table 5.31 CUCM at Function/Interface Level for the Banking Domain Example

Critical Use Case Model (Function/Interface Level)

1. Use Case Expression

CriticalUseCase: al (DepositMoney_Cashier, WithdrawMoney_ Cashier,
TransferMoney_Cashier)

DepositMoney_Cashier: one-of (DepositMoneyCasel, DepositM oneyCase?)

DepositMoneyCasel: one-of (DepositMoneyCasel 1, DepositMoneyCasel _2)

DepositMoneyCasel_1: path_f(CashierTerminal .deposit[cp29],
DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2g],
AccountDatabase.saveAccount[cp2s])

DepositMoneyCasel _2: path_f (CashierTerminal .deposit[cp2s],
DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a))

DepositMoneyCase2: path_f (CashierTerminal .deposit[cp29],
EconomicTransactionServer.deposit[cp2s])

WithdrawMoney_Cashier: one-of (WithdrawMoneyCasel, WithdrawM oneyCase2)

WithdrawM oneyCasel: one-of (WithdrawMoneyCasel 1, WithdrawMoneyCasel 2)

WithdrawMoneyCasel 1: path_f (CashierTerminal.withdraw[cp2g],
DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp2g],
AccountDatabase.saveAccount[cp2s])

WithdrawMoneyCasel 2: path_f (CashierTerminal.withdraw[cp2g],
DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp24],
AccountDatabase.saveAccount[cp2a))

WithdrawM oneyCase2: path f (CashierTerminal.transfer[cp2g],
EconomicTransactionServer.transfer[cp2s])

TransferMoney_Cashier: one-of (TransferMoneyCasel, TransferMoneyCase2)

TransferMoneyCasel: one-of (TransferMoneyCasel 1, TransferMoneyCasel 2)

TransferMoneyCasel 1: path_f (CashierTerminal.transfer[cp29],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

TransferMoneyCasel 2: path_f (CashierTerminal.transfer[cp2g],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

TransferMoneyCase2: path_f (CashierTerminal.transfer[cp2s],
EconomicTransactionServer.transfer[cp2s])

(Continued in Table 5.32)

99

Table 5.32 CUCM at Function/Interface Level for the Banking Domain Example
(Continued from Table 5.31)

Critical Use Case Modéel (Function/Interface Level)
(Continued from Table 5.31)
2. Congtraint Expression
2.1 Default Constraint
default (DepositMoney_Cashier : DepositMoneyCase?)
default (WithdrawMoney_Cashier : WithdrawM oneyCase?)
default (TransferMoney_Cashier : TransferMoneyCase?)
2.2 Satisfaction Constraint
mutual_require (DepositMoneyCasel 1, WithdrawMoneyCasel 1, TransferMoneyCasel 1)
mutual_require (DepositMoneyCasel 2, WithdrawMoneyCasel 2, TransferMoneyCasel 2)
mutual_require (DepositM oneyCase2, WithdrawM oneyCase2, TransferMoneyCase?2)

Table 5.33 Normalized Expression of CUCM at Function/Interface Level
for the Banking Domain Example

Normalized Expression of Critical Use Case Model (Function/Interface Level)

1. Use Case Expression

CriticalUseCase: al (one-of (one-of(DepositMoneyCasel 1, DepositMoneyCasel _2),
DepositMoneyCase?), one-of (one-of(WithdrawMoneyCasel 1, WithdrawMoneyCasel 2),
WithdrawM oneyCase?), one-of (one-of(TransferMoneyCasel 1, TransferMoneyCasel 2),
TransferMoneyCase2))

DepositMoneyCasel 1: path_f(CashierTerminal.deposit[cp2s], DeluxeT ransactionServer.deposit[cp2g],
AccountDatabase.getAccount[cp2s]|, AccountDatabase.saveAccount[cp2s])

DepositMoneyCasel 2: path f (CashierTerminal.deposit[cp2s], DeluxeT ransactionServer.deposit[cp2g],
AccountDatabase.getAccount[cp2a], AccountDatabase.saveAccount[cp2a])

DepositMoneyCase2: path_f (CashierTerminal.deposit[cp2s], EconomicT ransactionServer.deposit[cp2s])

WithdrawMoneyCasel 1: path f (CashierTerminal.withdraw[cp2s],
DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp2g],
AccountDatabase.saveAccount[cp2s])

WithdrawMoneyCasel 2: path f (CashierTerminal.withdraw[cp2s],
DeluxeTransactionServer.withdraw|cp2s], AccountDatabase.getAccount[cp24],
AccountDatabase.saveAccount[cp2a])

WithdrawM oneyCase2: path f (CashierTerminal.transfer[cp2g],
EconomicTransactionServer.transfer[cp2s])

TransferMoneyCasel 1: path f (CashierTerminal.transfer[cp29],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

TransferMoneyCasel 2: path_f (CashierTerminal.transfer[cp2g],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

TransferMoneyCase2: path_f (CashierTerminal.transfer[cp2g],
EconomicTransactionServer.transfer[cp2s])

2. Congtraint Expression

2.1 Default Constraint
default (CriticalUseCase : al (DepositMoneyCase2, WithdrawM oneyCase2, TransferMoneyCase2))

2.2 Satisfaction Constraint
mutual_require (DepositMoneyCasel 1, WithdrawMoneyCasel 1, TransferMoneyCasel 1)
mutual_require (DepositMoneyCasel 2, WithdrawMoneyCasel 2, TransferMoneyCasel 2)
mutual_require (DepositM oneyCase2, WithdrawM oneyCase2, TransferMoneyCase?)

100

Table 5.34 CUCM in Digunctive Norma Form at Function/Interface Level
inthe UDSL for the Banking Domain Example

Digjunctive Normal Form of the Critical Use Case Model (Function/Interface Level)

1. Digiunctive Normal Form
CriticalUseCase: one-of (CriticalUseCasel, CriticalUseCase2, Critical UseCase3)
CriticalUseCasel: all (DepositMoneyCasel 1, WithdrawMoneyCasel 1,
TransferMoneyCasel 1)
CriticalUseCase2: all (DepositMoneyCasel 2, WithdrawMoneyCasel 2,
TransferMoneyCasel 2)
CriticalUseCase3: all (DepositMoneyCase2, WithdrawMoneyCase2, TransferMoneyCase2)

DepositMoneyCasel _1: path f(CashierTerminal .deposit[cp2s],
DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2g],
AccountDatabase.saveAccount[cp2s])

DepositMoneyCasel_2: path _f (CashierTerminal .deposit[cp2g],
DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

DepositMoneyCase2: path_f (CashierTerminal.deposit[cp29],
EconomicTransactionServer.deposit[cp2s])

WithdrawMoneyCasel 1. path_f (CashierTerminal .withdraw[cp2s],
DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp2g],
AccountDatabase.saveAccount[cp2s])

WithdrawMoneyCasel 2: path_f (CashierTerminal .withdraw[cp2s],
DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp24],
AccountDatabase.saveAccount[cp2a])

WithdrawM oneyCase2: path_f (CashierTerminal.transfer[cp2g],
EconomicTransactionServer.transfer[cp2s])

TransferMoneyCasel 1: path _f (CashierTerminal.transfer[cp2g],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2g],
AccountDatabase.saveAccount[cp2s])

TransferMoneyCasel 2: path f (CashierTerminal.transfer[cp29],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a))

TransferMoneyCase2: path_f (CashierTerminal.transfer[cp2],
EconomicTransactionServer.transfer[cp2s])

2. Congtraint Expression
2.1 Default Contraint
default (CriticalUseCase : CriticalUseCase3)

5.3.7 Refining Architecture Model in Digjunctive Normal Form
from Component Level to Function/Interface Level

This step refines the Architecture Model in Digjunctive Norma Form (AMDNF)
at the component level (shown in Table 5.22) developed in Section 5.3.2 into the

101

function/interface level by consulting the ACIM. The result is shown in Table 5.35. The
normalization process takes into account the satisfaction constraints in the ACIM. There
are totally 6 digunctives in the AMDNF at function/interface level for the banking

domain example.

Table 5.35 AMDNF at Function/Interface Level
in the UDSL for the Banking Domain Example

Digjunctive Normal Form of Architecture Model (Function/Interface Level)

1. Digunctive Normal Form
Bank: one-of (BankCasel, BankCase2, BankCase3, BankCase4)
BankCasel: BankCasel 1
BankCase2: one-of (BankCase2 1, BankCase2 2)
BankCase3: BankCase3 1
BankCase4: one-of (BankCase4 1, BankCase4 2)

BankCasel 1: all (ATMCasel, CashierTermina Casel, CustomerValidationServerCasel,
CashierValidationServerCasel, TransactionServerManagerCasel,
EconomicTransactionServerCasel)

BankCase2 1: al (ATMCasel, CashierTermina Casel, CustomerValidationServerCasel,
CashierValidationServerCasel, TransactionServerManagerCasel,
DeluxeTransactionServerCasel, AccountDatabaseCasel)

BankCase2 2: all (ATM, CashierTerminal Casel, CustomerV alidationServerCasel,
CashierValidationServerCasel, TransactionServerManagerCasel,
DeluxeTransactionServerCase2, AccountDatabaseCase?2)

BankCase3 1: al (CashierTerminalCasel, CashierValidationServerCasel,
TransactionServerManagerCasel, EconomicTransactionServerCasel)

BankCase4 1: all (CashierTerminal, CashierValidationServer,
TransactionServerManager, DeluxeTransactionServerCasel,
AccountDatabaseCasel)

BankCase4 2: all (CashierTerminal Casel, CashierValidationServerCasel,
TransactionServerManagerCasel, DeluxeTransactionServerCase2,
AccountDatabaseCase?)

2. Default Constraint
default (BankCase2 : BankCase2 1)
default (BankCase4 : BankCase4 1)

From Table 5.22 (AMDNF at the component level) and Table 5.35 (AMDNF at
the function/interface level), derive a mapping for the AMDNF from the component level
to the function/interface level to impose the default constraints as shown in Table 5.35.

The mapping is shown in Table 5.36.

102

Table 5.36 Mapping of AMDNF from Component Level to
Function/Interface Level in the UDSL for the Banking Domain Example

Mapping of AMDNF from Component Level to Function/Interface Level

map (BankCasel: BankCasel 1)
map (BankCase2: BankCase2 1)
map (BankCase3: BankCase3 1)
map (BankCase4: BankCase4 1)

5.3.8 Mapping Architecture Model in Disjunctive Normal
Form to Critical Use Case Model (Function/Interface Level)

This step is to create a mapping from the Architecture Model in Digunctive
Normal Form (AMDNF) at the function/interface level to the Critical Use Case Model
(CUCM) in digunctive normal form at the function/interface level, i.e., a mapping from
Table 5.35 to Table 5.34 for the banking domain example. The mapping is based on the
component diagrams developed in Section 5.3.2 and the sequence diagrams developed in
Section 5.3.3. The components participate in the realization of the critical use cases
which form a case of the CUCM must be among the components in a case of the
AMDNF. The mapping from the AMDNF to the CUCM s unique. However, more than
one case of the AMDNF can be mapped to one case of the CUCM. This mapping is a
connection relating the system architecture to the system QoS. The mapping for the
banking domain exampleis shown in Table 5.37.

Table 5.37 AMDNF and CUCM Mapping
(Function/Interface Level) for the Banking Domain Example

AMDNF and CUCM Mapping
(Function/Interface Level)

mapping (BankCasel 1 : CriticalUseCase3)
mapping (BankCase2_1 : CriticalUseCasel)
mapping (BankCase2_2 : CriticalUseCase?)
mapping (BankCase3 1 : Critical UseCase3)
mapping (BankCase4 1 : CriticalUseCasel)
mapping (BankCased 2 : CriticalUseCase?)

103

5.3.9 Creating Abstract Component Model
The Abstract Component Model (ACM) consists of the UMM specifications for
al the abstract components in a DCS domain. The UMM specification is described in
detail in Section 3.3. A full list of UMM specifications for all the abstract componentsin

the banking domain exampleisin Appendix F.

5.3.10 Creating QoS Composition and Decomposition Model

The QoS Composition and Decomposition Model (QCDM) for a domain consists
of all the composition and decomposition rules for the identified QoS parameters on each
critical use case. Table 5.38 shows the QoS composition and decomposition meta-rules
used in the banking domain example. These rules are domain independent, and are called
meta-rules to distinguish them from the rules derived from them for critical use cases of a
specific DCS domain. Details about the QoS composition and decomposition meta-rules
arein [SUNO2, SUNO3].

The QCDM for a specific DCS domain is a direct application of the QoS
composition and decomposition mea-rules. The application of the meta-rules in Table
5.38 on throughput and endToEndDelay for all the critica use cases of the banking
domain example results in the QoS composition and decomposition rules for the banking
domain which are organized into four sets and are listed in Appendix G.

From the QoS composition and decomposition rules for the banking domain example, the
QoS Composition and Decomposition Model (QCDM) for each case of the Critical Use
Case Model (CUCM) in digunctive normal form can be derived. The results are shown in
Appendix H. The QoS composition and decomposition model for each bank instanceis
then determined when the architecture model is determined. The connection between

these two is done through the mapping developed in Section 5.3.8.

104

Table 5.38 QoS Composition and Decomposition Meta-Rules Used
in the Banking Domain Example

QoS Composition and Decomposition Meta-Rules

Notations:

[CriticalUseCaseM odel Case]: a case of a critical use case model at disjunctive normal form
{CriticalUseCases} : al critical use casesin a case of acritical use case model
[CriticalUseCase]: one critical use casesin a case of a critical use case model
<CriticalUseCase>: all function callsin acritical use case

1. QoS Composition Rules:
1.1 Composition rules for throughput
1.1.1 System_througput = [Critical UseCaseM odel Case] _throughput
1.1.2 [CriticalUseCaseM odel Case]_throughput = min ({ CriticalUseCases} _throughput)
1.1.3 Let [CriticalUseCase]: path (CALL,, CALL,, ..., CALLy)
T, = CALLy_throughput
T, = min(CALL y_p,1_throughput, T,,;), if CALL \.p.» iSasynchronous
UT, =1/CALL y_p,q_throughput +1/T,), if CALL _,,» iSSynchronous

[CriticalUseCase] _throughput = Ty
1.2 Composition rules for endToEndDelay
1.2.1 System_endToEndDelay = [Critical UseCaseM odel Case]_endToEndDelay
1.2.2 [CriticalUseCaseM odel Case]_endToEndDelay = max
({ CriticalUseCases} _endToEndDelay)
1.2.3 [CriticalUseCase]_endToEndDelay = sum (<CriticalUseCase>_endToEndDelay)

2. QoS Decomposition Rules:

2.1 Decomposition rules for throughput
[CriticalUseCaseM odel Case]_throughput > System_throughput
{CriticalUseCases} _throughput > System_throughput
<CriticalUseCase>_throughput > System_throughput

2.2 Decomposition rules for endToEndDelay
[CriticalUseCaseM odel Case]_endToEndDelay < System_endToEndDelay
{CriticallUseCases} _endToEndDelay < System _endToEndDelay
<CriticalUseCase>_endToEndDelay < System _endToEndDelay

5.4 Ordering Language Design

An ordering language is anther important artifact in the UGDP. The ordering
language is the interface that the application engineers (users) employ to order concrete
systems from a DCS family. This language is a kind of domain specific language. It can
be textual, tabular, graphical, or even natural-language-like.

The UDSL itself can be viewed as an ordering language. In this sense, the UDSL
defined a layered DSL which can specify a system to different levels of detall. Three
levels can be identified in the UDSL as an ordering language in the UA process: level of

105

system architecture, level of functionality (including communication patterns) and level
of the Qo0S. These three levels are inherent in the UDSL. During the UGDP,
transformations and mappings are developed for various models, thus the UDSL is
hierarchical and is powerful enough to express to the level of detail necessary for the
application programmers. In order to use the UDSL as an ordering language, an
application engineer must study the UGDM for a DCS family and becomes a domain
expert in some degree.

The tabular ordering language is an attractive method to order a system. It is
simple to use when compared with the UDSL. In this language, the possible systemsin a
system family are categorized and available options are provided. Here is an analog from
the real world. When ordering a car from a dealer, there is no need to describe to the
dealer to the great detail about what kind of car is needed. There is no need to describe to
the extreme detail like suspension, trunklet, etc. Cars are ordered by stating the model,
the trim and the options. The same can be done in generative programming. In the
banking domain example, we can state the class of the bank, options and desired QoS to
order a bank as shown in Table 5.39. Or simply say “get me a bank”, in which case, the

Basic Bank is returned as default.

Table 5.39 Tabular Ordering Language for
the Banking Domain Example

| BasicBank | AdvancedBank | SuperBank
User Termina
ATM 0 o
CashierTerminal . o o
System QoS
endToEndDelay | o (2000) o (1500) o (1000)
throughput o (500) 0 (900) o (1500)
Legend:
o standard requirements
o optional requirements
() default values

106

Table 5.40 Mapping Rules for the Tabular Ordering Language
of the Banking Domain Example

Mapping Rules for the Tabular Ordering Language of the Banking Domain Example

If no ATM and system throughput <= 650 operations/second, map to BankCase3
Elseif no ATM and system throughput > 650 operations/second, map to BankCase4
Elseif 1 ATM and system throughput <= 800 operations/second , map to BankCasel
Elseif 1 ATM and system throughput > 800 operations/second , map to BankCase2
Elseif the copy number of ATM is greater than or equal to 2, map to BankCase2

Next a mapping from the tabular ordering language to the UGDM described in the
UDSL needs to be designed. There are no rules how the mapping should be done. The
mapping is domain dependent and it changes overtime just like the “car ordering
language” which changes every year when the new car models are available. For the
banking domain example, the simple mapping rules are designed to trand ate the tabular
ordering language into the Architecture Model in Digunctive Normal Form at the
component level. The mapping rules are shown in Table 5.40.

Natural-language-like ordering language is aso very attractive and it is very
flexible. However, it is more difficult to implement and requires natural language
processing support. Domain specific order information is needed by a natura language
processor in order to process any query in that domain. The work on natural language
processing to support the UniFrame is carried out by University of Alabama at
Birmingham [LEEO2, LEEO2a], a collaborator of UniFrame research. An example of an
order in natural-language-like format in the banking domain example is. “Generate a
bank system with 1 ATM and 2 cashier terminals. The turn around time is less than 2000

microseconds, and the throughput is greater than 500 operations/second”.

This chapter presents in detail the UGDP for developing the UGDM for a selected DCS
domain. The UGDP is an iterative and incrementa process. The UGDM evolves during
iterations of the UGDP. Thisis the best way to achieve a stable and mature UGDM for a
specific DCS domain. In next chapter, the UniFrame System Generation Infrastructure
(USGI) that uses the UGDM and implements the UGDM processing logic is provided.

107

6. The UNIFRAME SY STEM GENERATION INFRASTRUCTURE (USGI)

Chapter 4 describes the UGDM which captures the common and variable
properties of a DCS family. The UGDM takes into consideration of the importance of
QoS in order to generate a QoS-aware DCS. Chapter 5 describes the UGDP, which is a
process for creating a UGDM. Presented in this chapter is the UniFrame System
Generation Infrastructure (USGI), which is the third part of the USGPF. The USGI is an
infrastructure for realizing system-level generative programming. The description of the
USGI in this chapter focuses on the high-level design, workflow modeling, the algorithm
and the interaction of modules that comprise the USGI. These descriptions are at a
conceptual level and are not tied to any software or technology that may implement the

architecture.

6.1 Overview of the USGI Architecture
The USGI helps to automatically generate a DCS from a DCS family by
integrating heterogeneous distributed software components based on a UGDM. It is not

intended for component code generation. It reflects the application engineering phase in
the component based software engineering process and directly uses the UGDM created
during domain engineering.

The architecture of the USGI is shown in Figure 6.1. It consists of severd
modules. Here is the brief description of the functionality of each module in this
framework.

e URDS This module is responsible for the active component management. It
dynamically discovers and manages the heterogeneous software components

deployed over the network by component developers. It aso assists in the finding

108

of the concrete components for the abstract components required by the System
Generator which is discussed below.

Wrapper and Glue Generator: This module is responsible for creating the
necessary wrapper and glue code to bridge heterogeneous distributed software
components. The glue code aso contains necessary instrumentations to compute
the system QoS for the integrated system, which is the part of the dynamic system
QoS validation.

UGDM Knowledgebase (UGDMKB): The module stores the UGDM and provides
information about the UGDM to other modules in the framework. The module
can be implemented as relational database tables or libraries, or both. For
example, the QCDM can be implemented as a library and other models can be
implemented as tablesin arelational database.

UGDMKB Builder Terminal: Thisisthe module that provides the user interface to
the software engineers who are responsible for the development and maintenance
of the UGDM and the UGDMKB.

UGDMKB Generator: This module is responsible for creating the UGDM and
represents the UGDM in databases and/or libraries. This module automates the
UGDP process to the extent feasible.

Application Programmer Terminal: This is the module that provides the user
interface to the application programmers or system assemblers and enables them
to generate aDCS.

Order Processor: This module is responsible for determining a DCS architecture
instance from a DCS family that satisfies the system requirements provided by the
application programmers or system assemblers according to the UGDM. A
natural language processor may assist to process natura language-like orders
using Two-Level Grammar (TLG) [LEEO2, LEEO23)].

System Generator: This module is responsible for generating a DCS from a DCS
family based on the UGDM. The System Generator implements the processing
logic of the UGDM. In the USGI design, the UGDM is separated from the

109

processing logic of the UGDM. The merit of this approach is that as the UGDM
evolves, the only thing that needs to be updated and maintained is the UGDMKB.

Application
(Cutput)

Systemn
Generator
UGOM KB
Generator —
Wrapper
and Glue
Getierator
Order
Frocessar

et

UGOMKE —_
Builder Application
Programmer

Figure 6.1 USGI Architecture

The detailed algorithms for each module are discussed in Section 6.3. The next
section presents the dynamic modeling of the USGI workflow which shows the overall
functionality of the framework, the role of each module in it and how the modules
interact with each other to achieve the functionality of the USGI.

110

6.2 Modeling the USGI Workflow
The UML [BOO98, OM GO03] modeling techniques proposed by Grady Booch and
his colleagues are used to model the dynamic view of the USGI. The overall functionality

of the USGI is modeled in an activity diagram shown in Figure 6.2. The interactions
between each module in the framework are demonstrated by the object flow in Figure
6.3.

6.2.1 USGI Activity Diagram

An activity diagram [BOO98, OMGO03] shows the flow from one activity to
anther within a system. The diagram shows a set of activities, the sequential or branching
flow from activity to activity in a system. The diagram illustrates the dynamic view of a
system. Activity diagrams are especialy important in modeling the functionality of a
system. They model the system as awhole.

The major functionality of the USGI isto support the application engineering with
generative programming to create a QoS-aware DCS from the available heterogeneous
distributed software components which are geographically dispersed over the network.
The major activities associated with this purpose include: gather system requirements,
determine the required component types, called abstract components; these two terms are
used interchangeably in this work), search the existing concrete components for the
required abstract components, select a set of concrete components to assemble a DCS,
determine the adapters which are required to bridge heterogeneous software components,
validate the system QoS (both statically by the QoS composition and decomposition
rules, and dynamically by the system behavior sampling which applies event grammars),
integrate and deploy a system, and generate its UniFrame description which is an ongoing
effort. The flow between these major activitiesis shown in Figure 6.2.

[Else]

[Modified]

Supply System
Requirements

1

(Determine Required
Component Types

|
>

[Else]

; Modify System
ﬁ Requirements

[Determined]

Search for Existing
Concrete Components

Supply or Develop [Else]
the Non-existing
Concrete Components
Else] \l/ ifi
[Flse A [Satistied] Select aNew Set
of Components
(O Components
[Els]
[Satisfied]
Determine Required S Search for Existing
[Glue and Wrappers] [Glue and Wrappers

J

Generate Non-

existing Glue
and Wrappers

[Satisfied]

[Else] \l/
N

—

\l/[Found All]

[Else]

Vadidate the
Integrated

Abort the Task

Figure 6.2

System

Integrate the
Target System

[Else]

Meet Requirements]

Deploy the Integrated System
and Generate the System
UniFrame Description

USGI Activity Diagram

111

112

[hausnes]

WS
pajBa|
aylAnieq

Fau0d WAoo

RS vy 108185

[z=13]

of

aju0 7 AUSkE-Uop
a] dojawan] 4o Addns

Fdauadwar

[paysnes]

[paupan]

\ > URjEAS
pajeslag|
iy e Haan i
Alddns
whie] ay & (i punia]
apba|
UORRRS | e
’ alj) ssied
[=213]
e B gseyay ||
pajefa) sdadded i pue ey | —
AL a1EplEA, anjg BuEa 2
nwﬁ_o a0 s
Fawainha e 3k, SO LI D
ff=n dipic AUIEEa-L0h auodwnd agEsod
=N TS QUi Snlels ey
o Auieas 1lasald
EhjEls Jnsay
Auueas 1uazal4
siaddeip
pUE ahjs
padinkay
=INITR =Ty \\‘
Fjusuodwo o LON ey Rads auyl
b= =T alluly L -t 3B 4 pue Aepz0
AunErg
10 B9, a3 sawwelfog il
d a4}
yreay [Paui et b [ag)q) 0] Lo (e
Auueas Wazalg
Ao snels -
afiays [
Uyl s . £
wagAs sUawadnked
WA [, e § waphs |™
Addng r ¥ 1
Uneay nads auuEag a4} =z
Al ooy pue jleay
Jojelauas B IS |
il NS pue I0EEa0014 TN Y|
g 5 Jaddein, 504N faian i=T0ls) 10 e oy

sawanbay |
wasAS Alpogy

EEE]

FHaWanhay
walEhs iy

ASLER 4
o ged|jddy

Figure 6.3 USGI Object Flow

113

6.2.2 USGI Object Flow

The object flow [BOO98, OMGO3] is a specia activity diagram that includes
participating objects (modules in the USGI). It emphasizes the flow of control among
different modules and shows the dependency relationships between them. Two kinds of
relationships can be shown: the kinds of objects that have primary responsibility for
performing an action and other objects whose values are used or determined by the
action. The object flow partitions activities in an activity diagram into groups, each group
representing a business process (module) that is responsible for those activities. In the
UML, each group is called a swimlane. Swimlanes are a kind of package for organizing
responsibility for activities. Thus, a swimlane specifies a locus of activities. Every
activity belongs to exactly one swimlane, but transitions may cross lanes.

In the USGI, there is one swimlane for each module in the object flow, which is
shown in Figure 6.3. The USGI object flow is derived from the USGI activity diagram by
partitioning the activity diagram into swimlanes with the participating modules. It reflects
al the activities in the USGI activity diagram while zooming into most of the activities.
Thus, it reflects more detail about the flow and control information than the USGI

activity diagram.

6.3 Modules of USGI

This section describes the functionality of each module in the USGI architecture,

with emphasis on the System Generator module. Some modules in the USGI are results
from other members of the UniFrame research, such as the URDS [SIR02], and the
Wrapper and Glue Generator [CAO02, ZHAO02]. This section provides only a brief

description about this kind of modules.

6.3.1 Data Structures Used in Algorithmsin Modules of USGI
Tables 6.1, 6.2 and 6.3 show the data structures used in the algorithms by various
modules of the USGI, which are described in the following sections.

114

Table 6.1 Data Structure for Algorithmsin System Generator

AbstractComponent A data structure that holds the UMM
abstractComponent description of an abstract component.
AdapterType A data structure that defines an adapter type.
adapter Type It consists of a bridge type for two different
component models and two component types
that need to be bridged and their
corresponding component models.
ConcreteComponent A data structure that holds the UMM
concreteComponent, description of a concrete component. An
adapter Component adapter itself is a component.
Hash Table A mapping between component types and

availableConcreteComponentTable

the corresponding list of available concrete
components. The names of component types

serve as the keys for this mapping.

Hash Table
selectedConcreteComponentTable

A mapping between component types and
the corresponding list of selected concrete
components. The names of component types

serve as the keys for this mapping.

Hash Table
availableAdapter Table

A mapping between adapter types and the
corresponding list of available instances. The

names of adapters serve as the keys for this

mapping.

Hash Table A mapping between component IDs and

resultTable their corresponding detailed UniFrame
Specifications. A data structure used in the
URDS.

List A list of instances of systemBluePrint for

systemBluePrintList

corresponding target system instances.

115

Table 6.2 Data Structure for Algorithms in System Generator
(Continued from Table 6.1)

List
requiredAbstractComponentList

A list of all

components for a system specification.

the required abstract

List
availableConcreteComponentList

A list of available concrete components for

an abstract component.

List
selectedConcreteComponentList

A list of selected concrete components for

an abstract component.

List

A list of required adapter types for a set of

adapter TypeL.ist selected concrete components.

List A list of available adapter instances for an
availableAdapterList adapter type.

List A list of post-processing collaborators of an

postprocessingCollaboratorList

abstract component.

QoSCompositionM odel A data structure or a library that contains
gosCompositionModel the QoS Composition Model for adomain.
QueryBean A data structure that holds a query about an
queryBean abstract component. It is passed from the
System Generator to the URDS.
QueryManager A controller component in the URDS
gueryManager framework that interfaces other modules in
the USGI.
Queue A gueue that contains instances of possible

selectedConcreteComponentTableQueue

selectedConcreteComponentTable. Each
table is an instance of the potentia target
system.

116

Table 6.3 Data Structure for Algorithmsin System Generator

(Continued from Table 6.2)

SystemBluePrint
systemBluePrint

A data structure that contains detailed
information about a system blueprint for a
target system instance. It includes the related
system specification, the selected concrete
components, the necessary adapters, QoS

validation results, etc.

SystemQoS
expectedSystemQoS
staticSystemQoS
dynamicSystemQoS

A data structure that holds values of the
system QoS. It can hold the expected system
QoS, the static/predicted system QoS or the
dynamic system QoS under different

circumstances.

SystemSpecification
systemSpecification

A data structure that contains details about a
system specification for a target system. It
includes a list of required component types,
the corresponding architecture instance and

the critical use case instance, etc.

6.3.2 URDS

The tasks of the URDS are to provide an active distributed component

management for the USGI in the UniFrame. It attempts to actively discover components

and registers them with the Headhunters in the URDS. An important advantage of having

such kind of service is that the concrete components are not coded in the System

Generator, thus, adding and removing a concrete component does not impact the System
Generator. Chapter 3 provides a brief overview of the URDS. For details of the URDS
and the related agorithms, see [SIR02]. The following algorithm (ALGORITHM 1)
provides the process for a URDS Proxy to interface with URDS service. It interfaces with

QueryManager, a service component in the URDS. The URDS Proxy is responsible for

117

passing the queries for concrete components from the System Generator to the URDS,

processes the results from the URDS before presenting them to the System Generator.

ALGORITHM_1 URDS_PROXY_SEARCH_COMPONENTS
IN: abstractComponent
OUT: availableConcreteComponentL.ist
Generate a queryBean with information from abstractComponent
resultTable = CALL queryManager with queryBean
PUT each value in resultTable into availableConcreteComponentList
RETURN availableConcreteComponentList

END ALGORITHM_1 URDS PROXY_SEARCH_COMPONENTS

6.3.3 Wrapper and Glue Generator

Considering the heterogeneous nature of components, it is conceivable that the
software realization of DCS will require an ensemble of components adhering to different
models. This requires adapter components to sit between the heterogeneous components
to facilitate their cooperation. Thus, the computational aspect of an adapter component
indicates the two models for which it provides interoperability. The adapter components
achieve interoperability using the principles of wrap and glue technology [LUQO1]. The
research work on the adapter is underway at University of Alabama, a collaborator of the
UniFrame research. Figure 6.4 shows a simplified model for an adapter. Each adapter
component consists of a bridge (adapter core) and two wrapper and glues. Each adapter
core provides trandlation capabilities for a pair of specific component models. Each
wrapper and glue takes care of interfacing with a specific component type (abstract
component). The Wrapper and Glue Generator is responsible for creating necessary
wrapper and glues and assembles them with appropriate adapter core. A bridge can be
used for generating multiple adapters. The ALGORITHM _2 outlined below shows the
basic steps for creating an adapter. More research is underway to incorporate
instrumentation code for QoS measurements into the glues.

118

Bridge
o 4@
Wrapper and

Wrapper and

Glue for Glue for
Component Component

Typel Type?2

Figure 6.4 Adapter Model

ALGORITHM_2 WGG_GENERATE_WRAPPER_GLUE
IN: adapter Type
OUT: adapter Component // If adapter Component is NULL,
/I it means the adapter cannot be generated.
GET the bridge type from adapter Type
GET an appropriate bridge for the bridge type
|F the bridge does not exist
RETURN NULL // The adapter can not be generated.
END IF
GET two component types from adapter Type
Generate appropriate wrapper and glues for the two component types
IF any of the two wrapper and glues can not be generated
RETURN NULL // The adapter can not be generated.
END IF
adapter Component = Assembl e the bridge and two wrapper and glues
RETURN adapter Component
END ALGORITHM_2 WGG_GENERATE_WRAPPER_GLUE

119

6.3.4 UGDM Knowledge Base (UGDMKB)

The UGDM Knowledge Base (UGDMKB) is an important module in the USGI. It
stores the UGDM created in the UGDP. The UGDMKB can contain both relational
database tables and libraries for a DCS domain. For example, the computing for the
system QoS according to the QoS composition rules can be implemented as a library and
other models in the UGDM can be represented as relational database tables. The Order
Processor and System Generator use the UGDMKB during their activities. There are no

specia algorithms designed for this module.

6.3.5 UGDMKB Builder Termina
This module provides a graphical user interface to the UGDMKB builders to
access the UGDMKB Generator. UGDMKB builders create the UGDMKB through this
module. The general algorithm for this module is described in ALGORITHM_3.

ALGORITHM_3 UGDMKB_BT_CREATE_UGDMKB
IN: the domain knowledge of a DCS domain
OUT: UGDMKB
CALL ALGORITHM_4 UGDMKBG_CREATE_UGDMKB with the domain
knowledge of a DCS domain
END ALGORITHM_3 UGDMKB_BT_CREATE _UGDMKB

6.3.6 UGDMKB Generator
The UGDMKB Generator transforms the UGDM into predefined formats
(relational database tables or libraries) to be stored in the UGDMKB. The UGDMKB
Generator also consists of tools to automate the UGDP to the extent feasible to create the
UGDM for a DCS domain. The agorithm provided in ALGORITHM _4 is the overall

process for this module at a high conceptual level. Chapter 5 describes the process in

120

detail. Research work is underway to apply the Generic Modeling Environment (GME)
[GME] to automate the process.

ALGORITHM_4 UGDMKBG_CREATE_UGDMKB
IN: the domain knowledge of a DCS domain
OUT: UGDMKB
CREATE requirement models (use case model and critical use case model)
DESIGN alayered architecture
CREATE component diagrams
CREATE sequence diagrams
REFINE the critical use case model to the abstract component level
IDENTIFY component interfaces and communication patterns
REFINE the critical use case model to the function/interface level
REFINE the architecture model in disjunctive normal form from component level
to function/interface level
MAP the architecture model in digunctive normal form to the critical use case
model (function/interface level)
CREATE the abstract component model
CREATE the QoS composition and decomposition model
GENERATE the UGDM from the artifacts created from the above steps
PUT the UGDM into the UGDMKB
END ALGORITHM_4 UGDMKBG_CREATE_UGDMKB

6.3.7 Application Programmer Terminal
This module interacts with application programmers to fulfill an “order” of a
system from a system family. The order can be either in certain predefined formats or in a
natural- language-like format. This module passes the order to an Order Processor to get

the target system specification, and then supplies the system specification to a System

121

Generator to generate the best system that meets the requirement. The general algorithm
for this moduleis described in ALGORITHM _5.

ALGORITHM_5 APT_ORDER_SYSTEM
IN: an order for a system
OUT: systemBluePrint
systemJecification = CALL ALGORITM_6 ORDER_PROCESSOR_ORDER
with the order for a system
IF systemSpecification is NULL
RETURN NULL // no system can fulfill the requirements
ELSE
systemBluePrint = CALL ALORITHM_7 SG_GENERATE_SYSTEM
with systemSpecification
RETURN systemBluePrint
END IF
END ALGORITHM_5 APT_ORDER_SYSTEM

6.3.8 Order Processor

The Order Processor is responsible for determining the target system
specification from an “order”. This order can be presented in a predefined format or
natural-language like manner. A Natural Language Processor (NLP) assists Order
Processor in the USGI to process an order in a natural-language-like format. The NLP is
based on the theory of Two-Level Grammar (TLG) [BRY02] and natural language
specifications [BRY00]. TLG allows queries over the knowledge base, such as a problem
Space or a solution space, to be stated in a natural-language-like manner. This is
consistent with the manner in which the UMM s stated. For details of the TLG and the
natural-language-like query processing in the UniFrame, see also [LEEO2, LEEQ2a,
BRY02a]. The work on the NLP is underway at University of Alabama at Birmingham, a

122

collaborator of the UniFrame research. The general algorithm for this module is
described in ALGORITHM _6.

ALGORITHM_6 ORDER_PROCESSOR_ORDER
IN: an order for a system
OUT: systemSpecification
DETERMINE the system architecture instance at the component level according
to the mapping from the requirement space to the solution space
DETERMINE the system architecture instance at function/interface level
according to the architecture model mapping
DETERMINE the required components according to the system architecture
instance at the function/interface level
DETERMINE the critical use case model instance according to the architecture
model critical use case model mapping
DETERMINE the expected component QoS according to the QoS decomposition
rules
DETERMINE the multiplicity of required components according to the order and
the multiplicity model
PUT all information derived above in systemSpecifiction
RETURN systemSpecification
END ALGORITHM_6 ORDER_PROCESSOR_ORDER

6.3.9 System Generator
The System Generator takes a system specification and returns a generated
system. The System Generator is responsible for system assembly and system validation.
The validation includes two phases: static validation (by QoS composition rules) and
dynamic validation (by the event grammars with user supplied test cases). The System
Generator is like an automobile production line. It reads a system specification, acquires
the necessary components through the URDS and/or the Wrapper and Glue Generator,

123

checks component availability, assembles the components, tests and validates the system,
and then releases the product (i.e., an integrated system that satisfies the necessary QoS
requirements). Section 6.3.9.1 provides the process for generating a DCS in the

UniFrame. The following sections describe various algorithms of the System Generator.

Table 6.4 Process for System Generation

Step 1: | Contact the URDS to acquire concrete components for the required abstract
components. Check if concrete components are available for all abstract
components. If they are available, go to step 2. If concrete components for any
abstract components are not available, prompt the application programmer to
provide these components. If the application programmer can provide the

missing concrete components, go to step 2. If not, abort the process.

Step 2: | Select an appropriate set of concrete components from the available concrete

components. If no new set is available, go to step 7.

Step 3: | Check if any adapter is needed for bridging the selected concrete components.
If no adapter is needed, go to step 4. Otherwise, contact the URDS to acquire
the adapter(s). If the URDS can not find all the needed adapters, contact the
Wrapper and Glue Generator to generate the wrapper and glues to assemble
the adapter(s). If the Wrapper and Glue Generator can generate all the needed
missing adapters, go to step 4. If not, discard this set of concrete components

and go to step 2. Otherwise, this collection forms a potential DCS.

Step 4. | Validate the system QoS staticaly by the QoS Composition Model. If the
system meets the QoS requirements, go to Step 5. If not, discard this set and
go to step 2.

Step 5: | Configure the system according to the UGDM.

Step 6: | Validate the system QoS dynamically by the user provided test cases (done by
event grammars). If the system meets the QoS requirements, keep the system,
otherwise, discard it. Go to step 2.

Step 7: | Select the best system and return the system.

124

6.3.9.1 Process for System Generation

This section outlines the steps for system generation taken by the System
Generator in Table 6.4. The agorithms for these steps are described in the following
sections. The System Generator is the central connection in the USGI. It requires services
from all other modules in the framework. The various algorithms reflect its relationship

with those modules.

6.3.9.2 Algorithm for Generating a System

ALGORITHM 7 outlines the process for generating a system from a system
specification. This algorithm applies the rest of the agorithms designed for the System
Generator. It returns the best system in terms of the system QoS. The notion of best
system can be defined differently under different circumstances, For example, the best
system can be defined as the one with the best system QoS, or the one that has the closest
system QoS to the system QoS requirements.

ALGORITHM_7 SG_GENERATE_SYSTEM
IN: systemSpecification
OUT: systemBluePrint
availableConcreteComponentTable = CALL ALGORITHM _8
SG_ACQUIRE_CONCRETE_COMPONENTS
with systemSpecification
|F availableConcreteComponentTable is NULL
RETURN NULL //Abort the process.
/I The system specification cannot be fulfilled.
ELSE
Generate sel ectedConcreteComponent TableQueue from
availableConcreteComponentTable and systemSpecification
WHILE selectedConcreteComponentTableQueue is NOT empty
CREATE asystemBluePrint for the possible target system instance

sel ectedConcreteComponentTable = Remove one table from
sel ectedConcreteComponentListQueue
ADD selectedConcreteComponentTable to systemBluePrint
adapter TypeList = CALL ALGORITHM_9
SG DETERMINE_ADAPTER_TYPESwith
selectedConcreteComponentTable
and systemSpecification

125

|F adapter TypeList isNULL //Fail to determine required adapters
Continue to the END WHILE // Discard the combination

ELSE

ADD adapter TypeL.ist to systemBluePrint
|F adapter TypeList isNOT empty

availableAdapterTable= CALL ALGORITHM_10

SG_ACQUIRE_ADAPTERS
with adapter TypeL.ist
|F availableAdapter Tableis NULL

Continue to the END WHILE // Discard the

// combination

END IF

END IF

staticSystemQoS= CALL ALGORITHM_11
SG_GET_STATIC_SYSTEM_QOS

IF staticSystemQoS does not meet expectedSystemQoS in

systemSpecification
Continue to the END WHILE // Discard the
/I combination
ELSE
ADD staticSystemQoSto systemBluePrint
CALL ALGORITHM 12
SG ASSEMBLE _SYSTEM

126

|F system assembly failed
Continue to the END WHILE // Discard the
/I combination
END IF
dynamicSystemQoS= CALL ALGORITHM_13
SG_GET_DYNAMIC SYSTEM_QOS
IF dynamicSystemQoS does not meet
expectedSystemQoS in systemSpecification
Continue to the END WHILE // Discard the
/I combination
ELSE
ADD dynamicSystemQoSto systemBluePrint
Put systemBluePrint for this target system
instance in systemBluePrintList
END IF
END IF
END IF
END WHILE
END IF
SORT systemBluePrintList by dynamicSystemQoS
systemBluePrint = GET systemBlueprint with the best dynamicSystemQoS from
the sorted systemBluePrintList
RETURN systemBluePrint
END ALGORITHM_7 SG_GENERATE_SY STEM

6.3.9.3 Algorithm for Acquiring Concrete Components

ALGORITHM _8 outlines the process for acquiring the concrete components via
the URDS for the required abstract components in a system specification. The request is
passed from the System Generator to the URDS through the URDS Proxy.

127

ALGORITHM_8 SG_ACQUIRE_CONCRETE_COMPONENTS
IN: systemSpecification
OUT: availableConcreteComponentTable
/' If availableConcreteComponentTableis NULL, it means some abstract
/I components do not have available concrete components. Thus, the
/I system specification cannot be fulfilled.
requiredAbstractComponentList = GET the list of required abstract components
from systemSpecification
FOREACH abstract component in requiredAbstractComponentList
availableConcreteComponentList = GET a list of available concrete
components for the abstract component from the URDS.
|F availableConcreteComponentList is empty
availableConcreteComponentList = GET available concrete
components for the abstract component from the
Application Programmer.
END IF
|F availableConcreteComponentList is empty
Return NULL //Abort the process. The system specification can
not be fulfilled.
ELSE
PUT the abstract component name and
availableConcreteComponentList in
availableConcreteComponentTable
END IF
END FOREACH
RETURN availableConcreteComponentTable
END ALGORITHM_8 SG_ACQUIRE_CONCRETE_COMPONENTS

128

6.3.9.4 Algorithm for Determining Adapter Types
ALGORITHM _9 outlines the process of determining the adapter types for a

selected combination of concrete components that forms a possible target system

instance.

ALGORITHM_9 SG DETERMINE_ADAPTER_TYPES
IN: selectedConcreteComponentTable, systemSpecification
OUT: adapter TypeL.ist // 1) If adapter TypeL.ist is empty, it means no
Il need for adapters. 2) If adapter TypeList isNULL, it
/I means some adapter type cannot be determined; thus, the
/I system specification cannot be fulfilled.
GET the domain name from the systemSpecification
bridgeTable = GET the bridge table from the UGDMKB for the domain
componentinteractionTable = GET the abstract component interaction table from
the UGDMKB
FOREA CH concrete component (C1) in selectedConcreteComponentTable
postprocessingCollaboratorList = GET the corresponding list of post-
processing collaborator types from componentlnteractionTable for
the type of the concrete component
|F postprocessingCollaboratorList is NOT empty
FOREACH abstract component in postprocessingCollaboratorList
selectedConcreteComponentList = GET the selected
concrete component list for the abstract component
from selectedConcreteComponentTable
FOREACH concrete component (C2 in
selectedConcreteComponentList
IF C1 and C2 are of different component models
GET the bridge type from bridgeTable
IF the bridge type exists

129

PUT the bridge type, two abstract
components and two
component models (for C1 and
C2) in adapter Typelist

ELSE
RETURN NULL //Abort the task.

/[The requirement cannot be
/1 fulfilled.

END IF

END IF
END FOREACH
END FOREACH
END IF
END FOREACH

RETURN adapter TypeL.ist
END ALGORITHM_9 SG_DETERMINE_ADAPTER_TYPES

6.3.9.5 Algorithm for Acquiring Adapters
ALGORITHM_10 outlines the process for the System Generator to acquire
adapters from the URDS via the URDS Proxy. If no adapter is found, the System

Generator sends the request to the Wrapper and Glue Generator.

ALGORITHM_10 SG_ACQUIRE_ADAPTERS
IN: adapter TypeList
OUT: availableAdapter Table
/'If availableAdapter Tableis NULL, it means some adapter types do not
/I have available instances; thus, the system specification cannot
/1 be fulfilled.
FOREACH adapter in adapter TypelL.ist

availableAdapterList = GET alist of adapter instances for the adapter type

from the URDS.
|F availableAdaperList is empty

availableAdapterList = GET the adapter instances from the

Wrapper and Glue Generator
END IF
|F availableAdapterList is empty

RETURN NULL //Abort the process, the task can not be fulfilled.

ELSE
PUT the name of the adapter type and availableAdapterList in
availableAdapter Table
END IF
END FOREACH

RETURN availableAdapter Table
END ALGORITHM_10 SG_ACQUIRE_ADAPTERS

6.3.9.6 Algorithm for Getting Static System QoS

ALGORITHM _11 outlines the process for getting the static system QoS from the

QoS Composition Model, which is implemented as a library. The static system QoS is

predicted from the component QoS advertised for the concrete components by the

component developers. These component QoS are documented in the UMM

specifications when the concrete components are deployed over the network.

ALGORITHM_11 SG_GET_STATIC_SYSTEM_QOS
IN: selectedConcreteComponentList, systemSpecification
OUT: staticSystemQoS
GET gosCompositionModel for the domain from UGDMKB
/I The model isimplemented as alibrary
staticSystemQoS = CALL gosCompositionModel with

131

sel ectedConcreteComponentList and systemSpecification
RETURN staticSystemQoS
END ALGORITHM_11 SG_GET_STATIC_SYSTEM_QOS

6.3.9.7 Algorithm for Assembling a System

ALGORITHM _12 outlines the process for assembling a system from the selected
concrete components and possible necessary adapters. The configuration knowledge used
in system assembling includes the component interaction model and the component-level
multiplicity model. Domain dependent configuration knowledge can also be defined

when necessary.

ALGORITHM_12 SG_ASSEMBLE_SY STEM
IN: systemBluePrint
OUT: boolean // 1) true: system is assembled successfully
/I 2) false: assembly failed due to some reason,
I/ such as network errors, etc.
requiredAbstractComponentList = GET the list of required abstract components
from the systemBluePrint
selectedConcreteComponentTable = GET the table from systemBluePrint
componentinteractionTable = GET the abstract component interaction table from
the UGDMKB
requiredAdapterList = GET thelist of required adapters from systemBluePrint
foundAdapter Table = GET the found adapters from systemBluePrint
multiplicityModel = GET the component-level multiplicity model from the
UGDMKB
FOREACH concrete component in selectedConcreteComponentTable
LOCK the component for assembly (exclusively for a system assembler)
END FOREACH
/[configure the system according to the component-level multiplicity model
FOREACH abstract component (A1) in requiredAbstractComponentList

132

postProcessingCollaboratorList = GET the list of the post-processing
collaborators for the abstract component from
componentinteractionTable
|F postProcessingCollaboratorList isNULL
Continue to the END FOREACH
END IF
selectedConcreteComponentList (initiator) = GET the list of the selected
concrete components for the abstract component A1l from
selectedConcreteComponentTable
FOREACH abstract component (A2) in postProcessingCollaboratorList
selectedConcreteComponentList (responder) = GET the list of the
selected concrete components for the abstract component
A2 from selectedConcreteComponentTable
|F the multiplicity of A1 to A2 isoneto one
FOREACH concrete component (C1) in
selectedConcreteComponentList (initiator)
GET a concrete component (C2) from
sel ectedConcreteComponentL.ist (responder)
GET component ID (ID1) from C1
IF C1 and C2 are of the same technol ogy
GET component ID (ID2) from C2
ELSE
GET adapterType for C1 and C2 from
requiredAdapter TypeL.ist
GET the adapter from foundAdapter Table
for adapterType
GET component ID (ID2) from the adapter
END IF
GET the handleto C1 by ID1
CONFIGURE C1 with ID2

133

END FOREACH
ELSE IF the multiplicity of A1 to A2 isoneto many
FOREACH concrete component (C1) in
selectedConcreteComponentList (initiator)
FOREACH concrete component (C2) in
selectedConcreteComponentL.ist (responder)
GET component ID (ID1) from C1
IF C1 and C2 are of the same technology
GET component ID (ID2) from C2

ELSE

GET adapterType for C1 and C2
from requiredAdapter TypeL.ist
GET the adapter from
foundAdapter Table for
adapter Type
GET component ID (ID2) from the
adapter
END IF

GET thehandleto C1 by ID1
CONFIGURE C1 with ID2
END FOREACH
END FOREACH
ELSE IF the multiplicity of A2 to Al isoneto many
FOREACH concrete component (C2 in
selectedConcreteComponentL.ist (responder)
FOREACH concrete component (Cl1l) in
selectedConcreteComponentList (initiator)
GET component ID (ID1) from C1
IF C1 and C2 are of the same technology
GET component ID (ID2) from C2

134

ELSE
GET adapterType for C1 and C2
from requiredAdapter TypeL.ist
GET the adapter from
foundAdapter Table for
adapter Type
GET component ID (ID2) from the
adapter
END IF

GET thehandleto C1 by ID1
CONFIGURE C1 with ID2
END FOREACH
END FOREACH
END IF // other multiplicity situation also needs to be handled
/I those listed are some most common situations
END FOREACH
END FOREACH
CONFIGURE other domain dependent configuration knowledge if necessary

END ALGORITHM_12 SG_ASSEMBLE_SY STEM

6.3.9.8 Algorithm for Getting Dynamic System QoS

ALGORITHM _13 outlines the process for getting dynamic system QoS through

the event grammars model (the system behavior model), which is being developed at

New Mexico State University, a collaborator of the UniFrame research.

ALGORITHM_13SG_GET_DYNAMIC_SYSTEM_QOS

IN: systemBluePrint
OUT: dynamicSystemQoS
GET handler to evevenGrammar Model for the domain.

135

dynamicSystemQoS
= CALL eventGrammarModel with the customer supplied test cases
RETURN dynamicSystemQoS
End ALGORITHM_13 SG_GET_DYNAMIC_SYSTEM_QOS

This chapter presents in detail the high level concepts of the USGI in the USGPF. The
description covers the architecture, the workflow modeling of the system and the
algorithms for each module in the framework. In the next chapter, a prototype design and
implementation with multi-tier architecture for the USGI is described. The banking
domain example developed in Chapter 4 and Chapter 5 serve as the example to

demonstrate the prototype.

136

7. THE USGI PROTOTY PE DESIGN AND IMPLEMENTATION

Chapter 6 describes the USGI at the conceptual level. The architecture, workflow
modeling and algorithms presented in Chapter 6 do not adhere to any specific
implementational technology. The USGI can be realized in severa different technologies.
In this chapter, the details of a prototype design and implementation of the USGI using
Java is presented. The prototype serves to demonstrate the feasibility of the proposed
USGPF in this thesis and allows experimentation with it.

7.1 Technology
This section describes the J2EE™ technology [SM01, SM02, SM024] that is the
model for designing and implementing the prototype of the USGI. J2EE™ technology

provides a component-based approach to the design, development, assembly, and
deployment of enterprise applications. The J2EE™ platform offers a multi-tiered
distributed application model, the ability to reuse components, integrated Extensible
Markup Language (XML)-based data interchange, a unified security model, and flexible

transaction control.

7.1.1 J2EE™ Application Model
A J2EE™ application uses a multi-tiered distributed application model. In this
model, the application logic is divided into components according to functions. The

various application components that make up a J2EE™

application are installed on
different machines. The installation of the components depends on the tier to which the

application component belongs in the multi-tiered J2EE™ environment. The multi-tiered

137

architecture is an extension of the traditional two-tier client-server model [SM02a). In a
four-tier architecture, the client is replaced by a web browser and HTML pages powered
by servlet/JavaServer Pages™ technology hosted on a web server. A multithreaded
application server sits between the web sever and a backend database. Figure 7.1 shows
the four-tier architecture of J2EE™ applications [SM02].

J2EE J2EE
Application 1 Application 2
Application Dynamic Client Client
Client HTML Pages Tier Machine

JSP Pages Web

o

Tier J2EE
Server
/_\ /\ Machine
Enterprise Enterprise Business
Beans Beans Tier
EIS Database
Database Database Tier Server
Machine

Figure 7.1 Multi-tier Architecture of J2EE™ Applications (from [SM02])

7.1.2 J2EE™ Components
J2EE™ applications are made up of J2EE™ components [SM02, SM024]. A
J2EE™ component is a self-contained functional software unit that is assembled into a
J2EE™ application with its related classes and files, and it communicates with other
components. The J2EE™ specification defines the following J2EE™ components: Client

Components, Web Components and Business Components.

7.1.2.1 Client Components

Client Components run on client machines. The Client Components include Web
Clients, Applets and Application Clients.

138

A Web Client consists of two parts. dynamic Web pages containing various types
of markup language (e.g., HTML and XML), which are generated by Web Components
running in the Web tier, and a Web browser, which renders the pages received from the
server. A Web client is sometimes called a thin client. Thin clients usualy do not do
things like query databases, execute complex business rules, or connect to legacy
applications.

A Web page received from the Web tier can include an embedded Applet. An
Applet is a small client application written in the Java programming language that
executes in the Java virtual machine installed in the Web browser. However, client
systems will likely need a Java Plug-in and possibly a security policy file in order for the
applet to successfully execute in the Web browser.

An Application Client provides a way for users to handle tasks that require a
richer user interface than can be provided by a markup language. It typically has a
graphica user interface (GUI) created from Swing or Abstract Window Toolkit (AWT)
APIs.

7.1.2.2 Web Components
J2EE™ Web Components can be either servlets or Java Server Pages (JSP).

Servlets are Java programming language classes that dynamically process requests and
construct responses. JSP pages are text-based documents that execute as servlets but
allow a more natural approach to creating static content. Static HTML pages and applets
are bundled with Web Components during application assembly, but are not considered
Web Components by the J2EE™ specification. Server-side utility classes can aso be
bundled with Web Components and, like HTML pages, are not considered Web
Components. Like the client tier, the Web tier might include a JavaBeans component
[STEQQ], which is discussed in Section 7.1.2.4, to manage the user input and send that

input to enterprise beans running in the business tier for processing.

139

7.1.2.3 Business Components

Business Components are Enterprise JavaBeans'™ (EJB™) components
(enterprise beans), which are deployed on application servers and form the business tier.
The business components provide the business logic that solves or meets the needs of a
particular business domain such as banking, retail, or finance. The heavyweight
operations in clients in the traditiona client-server model are off-loaded to enterprise
beans executing on the application server where they can leverage the security, speed,

services, and reliability of J2EE™ server-side technologies.

7.1.2.4 JavaBeans Component

The server and client tiers might aso include components (JavaBeans
components) based on the JavaBeans Component Architecture [SM03a] to manage the
data flow between an application client or applet and components running on the J2EE™
server or between server components and a database. JavaBeans components are not
considered J2EE™ components by the J2EE™ specification. JavaBeans components are
reusable software components that are written in the Java programming language.
JavaBeans components have instance variables and get and set methods for accessing the
data in the instance variables. JavaBeans components used in this way are typically
simple in design and implementation, but should conform to the naming and design

conventions outlined in the JavaBeans component architecture.

7.1.3 Service Technologies
The J2EE™ platform [SM02] service technologies allow applications to access a
variety of services. The prominent service technologies supported are JDBC™ AP
[SMO03b] which provides access to databases, Java Transaction APl (JTA) [SM03c] for
transaction processing, Java Naming and Directory Interface™ (INDI) [SM03d] which
provides access to naming and directory services, J2EE™ Connector Architecture
[SMO03e] which supports access to enterprise information systems, and Java API for

140

XML Processing (JAXP) [SMO3f] which enables applications to parse and transform
XML documents independent of a particular XML processing implementation. The

service technologies used in the prototype are described below.

7.1.3.1 JDBC™ API 2.0
The JDBC™ API provides methods to invoke SQL commands from Java

programming language methods. The JDBC API has two parts. an application-level
interface used by the application components to access a database, and a service provider
interface to attach a JDBC driver to the 2EE™ platform.

7.1.3.2 Java API for XML Processing 1.1
XML is a language for representing text-based data so the data can be read and

used by any program or any tool. Programs and tools can generate XML documents that
other programs and tools can read and use. Java APl for XML Processing (JAXP)
supports processing of XML documents using DOM, SAX, and XSLT parsers.
Depending on the needs of the application, developers have the flexibility to swap
between XML processors (such as high performance vs. memory conservative parsers)

without making application code changes.

7.1.4 Communication Technologies

Communication technologies provide mechanisms for communication between
clients and servers and between collaborating objects hosted by different servers. Some
of the communications technologies supported by the J2EE™ Platform [SM01] include
Transport Control Protocol over Internet Protocol (TCP/IP), Hypertext Transfer Protocol
HTTP, Secure Socket Layer SSL, Java Remote Method Protocol (JRMP), Java IDL,
Remote Method Invocation over Internet Inter ORB Protocol (RMI-110P), Java Message
Service (IMS), JavaMail and Java Activation Framework. The prototype uses the HTTP

141

1.0 Protocol for communication between the browser-based clients and server side
components. The inter-component communication on the server side is achieved through
Java Remote Method Invocation (RMI). The communication techonologies used in the

prototype are described below.

7.1.4.1 HTTP 1.0 Protocol
The Hypertext Transfer Protocol (HTTP) [WWWO03] HTTP has been in use by
the World-Wide Web globa information initiative since 1990. It is an application-level,

generic stateless protocol for distributed, collaborative, hypermedia information systems.
A feature of HTTP is the typing and negotiation of data representation, allowing systems
to be built independently of the data being transferred.

7.1.4.2 Java Remote Method Invocation (RM1)
Java Remote Method Invocation (RMI) [SM03g] is a set of APIs in the Java
programming language that enables developers to build distributed applications. RMI

uses Java language interfaces to define remote objects, and it combines Java seriaization
technology and the Java Remote Method Protocol (JRMP) for performing remote method
invocations. JRMP is a proprietary stream-base protocol on top of the TCF/IP.

7.2 USGI Prototype Design
The USGI prototype is designed as a multi-tiered distributed application based on
the J2EE™ model. The USGI functionality is partitioned into modules, and these

modules are decomposed into specific objects to represent the behavior and data of the
application. The prototype adopts the Model-View-Controller (MVC) architecture. The
MV C architecture [GAM95, YOU95] can be described as: “ The Model represents the
application data and the rules that govern access and modification of this data. The View
renders the contents of a model. It accesses data from the model and defines how that

142

data should be presented. The Controller defines application behavior; it translates user
gestures into actions to be performed by the model”. The design of the USGI is shown in
Figure 7.2.

View Controller Modd
Web Server '
' RM UGDMKB
UGDMKB Generator
Generator E

! Proxy
UGDMKB | I

Builder ; :
Browser :

! Processor
“RMI

Query

Processor H NLP

Proxy

System

' Generator
Application : &7 AVRMI
Preramma : OrderProcessor.jsp 5
Browser <+—p e :
hitp! = oy ; RMI
E AcquireConcrete
H Components.jsp ; Wrapper
; and Glue URDS
: | Generator
o .
\ gm(j?tor : Proxy Proxy
Proxy H
Client | Web : Business ! Database
< Tier %'% Tier ; Tier Hié Tier >

Figure 7.2 USGI Prototype Design

The View of the USGI consists of browsers, which provides the interfaces for the
users (UGDMKB Builders and Application Programmers/System Assemblers/System
Integrators) to interact with the system. The View of the USGI forms the Client Tier of
the USGI architecture.

The Modédl of the USGI consists of the Business Tier and the Database Tier of the
USGI architecture. The Business Tier includes the following modules of the USGI:
UGDMKB Generator, Order Processor, System Generator, Wrapper and Glue Generator

143

Proxy, URDS Proxy, and Natural Language Processor (NLP), which is actually a proxy
to the NLP implemented in C++ by the University of Alabama, a collaborator of the
UniFrame research. The Database Tier includes the relational database tables of the
UGDMKB. The library of the UGDMKB is not shown in the figure as an individua
module. Thelibrary is used directly by the System Generator.

The Controller of the USGI consists of two parts: proxy classes and JSP pages.
The proxy classes mediate information exchanges between the JSP Pages and the
modules in the Business Tier. The JSP pages receive inputs from and render results to

users viathe browsersin the Client Tier.

7.3 USGI Prototype Implementation

This section describes the implementation of the USGI prototype using Java in
detail. Before the description of the implementation, the outline of the platform and the

environment, and the communication infrastructure for the implementation are described.

7.3.1 Platform and Environment

In the prototype created for this thesis, the algorithms outlined for the various
modules in Chapter 6 are implemented using the Java™ 2 Platform, Standard Edition
(J2SE) version 1.4.0 [SMO3]. The service components in the business tier are
implemented as Java-RMI based services. The UGDMKB is a database-oriented
implementation based on Oracle, version 8.1.7 [ORAQ3]. The web-based components
(JSPs), which service client interactions, are housed in the Tomcat 3.3a Servlet/JSP
Container [APAQO33].

7.3.2 Communication Infrastructure
The communication between proxy classes in the Web Tier and the Business
Components and the communication among the Business Components are based on Java

144

RMI. The connections to the databases are established using the JDBC APIs. Interactions
between the clients (users) and the Web Components are based on the HTTP protocol.

7.3.3 Implementation Details
This section organizes the details of the USGI implementation according to the
four-tier architecture. The description is presented in the following order: Client Tier,
Web Tier, Business Tier and Database Tier.

7.3.3.1 Client Tier

The client tier consists of the Client Components, which are web browsers in the

USGI. These Client Components provide the views (i.e., the interfaces) for the USGI,
through which the users (UGDMKB Builders and Application Programmers) can interact
with the system. The JSP and JavaBeans work together to implement the views. The JSP
pages dynamically generate html pages. JavaBeans encapsulate information exchanges
between Client Components, Web Components and Business Components. The following
JSP pages provide views to users. USGI.jsp, OrderWithoutNLP.jsp, OrderWithNLP.jsp,
Order.jsp, AvailableConcreteComponents.jsp, Sel ectedConcr eteComponents.j sp,
DetermineAdapter Types.jsp, AcquireAdapters.jsp, DynamicComponentQoS.jsp,
SaticSystemValidation.jsp, DynamicSystemValidation.jsp, ComponentDescription.jsp,
and UGDMKBGeneration.jsp. These JSP pages are part of the Web Components, which
forms the Controller in the MV C architecture. Not all the JSP pages in the Web Tier

provide views to the users. The Web Components are explained in the next section.

7.3.3.1.1 View Provided by usgi.jsp
Figure 7.3 illustrates the view provided by usgi.jsp. This view shows the main
demonstrations available in the prototype: System Generation without NLP, System

145

Generation with NLP and UGDMKB Generation. This view also provides choices for
running the USGI under different simulation modes.

Eile Edit \iew Favorites Tools Help

YW/ BAKE

FRAMEWORK FOR SEAMLESS INTEROPERATION OF HETEROGENEOUS DISTRIBUTED SOFTWARE COMPONENTS

Welcome to the UniFrame System Generation Infrastructure (USGI)
For Developing Heterogeneous DCS with the UniFrame Approach

URDS Simulation []
UGDMKB Simulation []
Target System Simulation []

I o) J[éy{s'iem Generation without MLP
| O System Generation with NLP
| O UGDMKE Generation

USGI Description

SPONSORED BY - rr.
THE OFFICE OF THE DEPUTY UNDERSECRETARY L@ &

OF DEFENSE FOR SCIENCE AND TECHNOLOGY,
AND THE OFFICE OF NAVAL RESEARCH

Figure 7.3 The View Provided by usgi.jsp

System Generation without NLP demonstrates the ordering of a system without
natural language query processing support. On the other hand, System Generation with
NLP demonstrates the ordering of a system with natura language query processing
support. UGDMKB Generation demonstrates the processing of the UGDM models in the
XML format into the Oracle database by using the XML parsers implemented with the
Xerces Java Parser from Apache [APAOQ3]. These parsers are described in Section
7.3.3.3.1

146

The simulation modes include URDS Smulation, UGDMKB Smulation and
Target System Smulation. The URDS Smulation simulates the URDS functionality of
searching for concrete components of the banking domain by local data structures. The
UGDMKB Smulation also simulates the relationa database tables of the UGDMKB for
the banking domain by local data structures. Under the Target System Smulation, the
dynamic component QoS testing, the system assembly and the dynamic system QoS
validation are simulated without running the bank components. These modes provide a

convenient way to demonstrate the USGI without setting up the whole system.

A http://magellan.cs.iupui.edu:8585/USGl/jsp/usgi. jsp - Micros... Q@]@
File Edit View Favorites Tools Help "

Order Without NLP it

~ Option BasicBank AdvancedBank SuperBank
Selection O @) @
User Terminal

variation] o
AT

: wariation
Cashier Terminal

‘copy number 1 V |

X X

2]
-

a1 <] [115] 2]
System QoS .
Erid To End Dilay "20ton | sl 4 A
(usec) yalue \Level 1: 1800 v | Level 1: 1500 v | Level 1: 1200 v |
ThinaghpaE variation A % i

{operationsisec) walue

Level 1:400 v | Level 1:700 v | Level 1:900 v |

Legend far variation: O {optional), X (mandatory)

l Cancel H Back H Order J

Figure 7.4 View Provided by OrderWithoutNLP.jsp

7.3.3.1.2 View Provided by OrderWithoutNLP.jsp
Figure 7.4 illustrates the view provided by OrderWithoutNLP.jsp. Thisview isthe
user interface to order a system without natural language processing support. The

147

ordering language is implemented as a table. Thisis an example of the implementation of
atabular DSL for ordering a system from the banking domain developed in Chapter 5.
The view allows application developers to select different options of bank system types:
Basic Bank, Advanced Bank and Super Bank, which differ from each other as shown by
the parameters in the figure: number of user terminals (both ATM and Cashier Terminal)
and system QoS requirements (end to end delay and throughput). It allows specifying
different parametersto order a bank system from a selected bank system type.

7.3.3.1.3 View Provided by OrderWithNLP.jsp

Figure 7.5 illustrates the view provided by OrderWithNLP.jsp. This view is the
user interface to order a system with natural language query processing support. Ordering
requirements are input as natural-language-like style in the provided text area. An
exampleis shown in Figure 7.5.

3 http://magellan.cs.iupui.edu:8585/USGF/jsp/ussgf.jsp - Micros... E@
File Edit Wiew Favorites Tools Help "

~

Order With NLP
Message: Input your order in the text area.

[Generate a bank system with 1 ATM and 2 cashier terminals.
|The turn around time should be less than 2000 microseconds and the throughput
must be greater than 500 operations/second.

l Cancel H Back H Order J

Figure 7.5 View Provided by OrderWithNLP.jsp

148

7.3.3.1.4 View Provided by Order.jsp

Figure 7.6 illustrates the view provided by Order.jsp. In this view the system
specification that meets the ordering requirement is displayed. The system specification
in the view includes System Name, Architecture ID (both at the component level and at
the interface level), Expected System QoS Required Abstract Components and their
Expected Component QoS which is derived through QoS Decomposition Model.

3 http://magellan. cs.iupui.edu: 8585/USGI/jsp/OrderWithoutNL... [= [O|X]

File Edit View Favorites Tools Help L3

System Specification

[Cancel } [Back J [Generate System {Manual)] [Generate System {Automatic)]

< i | 5

Figure 7.6 View Provided by Order.jsp

149

This view aso illustrates the two system generation choices provided by the
USGI: Generate System (Manual) and Generate System (Automatic). In the choice of
Generate System (Manual), the system allows users to interact with and make decisions
during the system generation process. In the choice of Generate System (Automatic), the
system will go through all the possibilities and return the best system to users. The best
system can be defined as the one with the best system QoS, or as the one with the closest
system QoS to the ordering requirements. In the choice of Generate System (Manual), the
users have the choice to decide which system is the best to their needs.

7.3.3.1.4 View Provided by AvailableConcreteComponents.jsp

Figure 7.7 illustrates the view provided by AvailableConcreteComponents.jsp.
This view shows whether concrete components have been found for the required abstract
components or not. If concrete components for a required abstract component have been
found, a click on the link under the column of Searching Result brings a list of concrete
components that were found by the URDS. If no concrete components have been found
for a particular abstract component, then the entry of the correspondent cell under the
column of Searching Result is“NOT FOUND”. This view also displays a message asking

usersto select a set of concrete components to assemble an integrated system.

A http://magellan.cs.iupui.edu:8585/USGI/jsp/... E

Eile Edit Wiew Favorites Tools Help

-~

Found Concrete Components
Please Select Concrete Components

CashierTerminal CashierTerminalCasal Found
CashierValidationServer CashiervalidationServerCasel Found

Tr i verh, TransactionSemnverManagerCase Found

Ec: icTr i ver _EcDnDmicTran_samiDnEiefverCasm Found

Cancel l I Back] [Determine Adapter Types]

Figure 7.7 View Provided by AvailableConcreteComponents.jsp

150

7.3.3.1.5 View Provided by SdlectConcreteComponents.jsp

Figure 7.8 illustrates the view provided by SelectConcreteComponents.jsp. This
view displays a list of found concrete components for a specific abstract component.
Users can check the checkbox to select components. A click on the link under the column
of ComponentID brings the UMM specification for the corresponding concrete
component. The links under the column of Dynamic QoS Tesing direct users to the page
to test the QoS of the components.

A http://magellan.cs.iupui.edu:8585/USGF/jsp/selectConcreteCom... Eﬂ@@
=

File Edit View Favorites Tools Help

A~

Found Concrete Components for the Abstract Component

CashierTerminal

Please select 1 copy of the available component(s).

columbus.cs.iupui.edu:9000/CashierTerminal CashierTerminal/CashierTerminalCagel Test []
raleigh.cs.iupui.edu:9000/CashierTerminal ~ CashierTerminal/CashierTerminalCase] Test]
cook.cs.iupui.edu:9000/CashierTerminal CashierTerminal/CashierTerminalCasel Test]

[Select Components] l Back]

Figure 7.8 View Provided by SelectConcreteComponents.jsp

7.3.3.1.6 View Provided by DetermineAdapter Types.jsp

Figure 7.9 illustrates the view provided by DetermineAdapter Types.jsp. This view
displays the required adapter types based on the set of selected concrete components.
Each row of the table in the view indicates one required adapter type, which is described
by three columns. Bridge Type, Preprocessing Component and Postprocessing
Component. The Bridge Type indicates the two component models that the adapter is

capable of bridging. The Preprocessing Component initiates the interaction and the

151

Postprocessing Component responds in the interaction. The interactions between these

two heterogeneous components are mediated by the adapter.

A http://magellan.cs.iupui.edu:8585/USGI/jsp/A... [= [OX]
Eile Edit View Favorites Tools Help

Required Adapter Types

JavaRMI- NET CashierTerminal CashierValidationServer

[Cancel] [Back] [Acquire Adapters]

| <

Eile Edit WView Favorites Tools Help

Found Adapters
L FeguimdAdaptetsy '

fl-NET CashieTerninal | CashiefValdationSener CashierValdationServerAdapter |

[Cancel] [Back] [Static System VYalidation] T

Figure 7.10 View Provided by AcquireAdapters.jsp

7.3.3.1.7 View Provided by AcquireAdapters.jsp
Figure 7.10 illustrates the view provided by AcquireAdapters.jsp. This view
displays the adapters found for the required adapter types by the URDS. The adapters

152

themselves are concrete components. The link under the column Found Adapter leads to
the UMM description for the adapter. In the current prototype, if more than one adapter is
found for arequired adapter type, the system randomly selects one adapter.

7.3.3.1.8 View Provided by DynamicComponentQoS,jsp

Figure 7.11 illustrates the view provided by DynamicComponentQoSjsp. This
view displays the results of testing component QoS dynamically in the column called
Dynamic QoS. The advertised QoS of the component is also displayed. The difference
between these two is shown in the column called Deviation. The dynamic testing of the
component QoS assumes that the component developer provides a test interface for the
component and this interface is used to validate the advertised component QoS values. If
no such interface is provided, this view displays the message “ This component can not be

tested. No testing mechanism is available.”

A http://magellan.cs.iupui.edu: 8585/USGF/jsp/DynamicComponent... [= [O]X]
..'l

File Edit WView Favorites Tools Help

~

Dynamic Component QoS

Eca_nomib:l'ransact:ronééwer

1,004.74 SE7EI 3745
995 25 103343 38.21
5,235 58 504073 19535
191.00 %840 | 740
110716 108588 -41.28
o013,21 93819 | 34.93
124136 119507 | 4628
B5 57 BIEFT | 3120

[Back] [Test Again

| %

Figure 7.11 View Provided by DynamicComponentQoS,jsp

153

7.3.3.1.9 View Provided by SaticSystemValidation.jsp

Figure 7.12 illustrates the view provided by SaticSystemValidation.jsp. This view
displays the results of the system QoS predicted by the QoS Composition Model. The
QoS values under the column of Expected System QoS are the user QoS requirements.
The predicted values are indicated under the column called Predicted System QoS The
difference between the expected and predicted system QoS is shown under the column
called Deviation.

A http://magellan.cs.iupui.edu:8585/USGI/jsp/A. .. E]@[Z]

Eile Edit View Favorites Tools Help o

Predicted (Static) System QoS &5
o system@os

Bank:

BankCased
EiankCéséé_1
CriticalUseCasehdadeld

400.00 152488 1,124.88
1,800.00 65579 -1,144.21

The static system QoS meets the expected system QoS.

Cancel ” Back] [Select Concrete Components] ’ Build System

~

< >

Figure 7.12 View Provided by SaticSystemValidation.jsp

7.3.3.1.10 View Provided by DynamicSystemValidation.jsp

Figure 7.13 illustrates the view provided by DynamicSystemValidation.jsp. This
view displays the results of dynamic (or real) system QoS computed by executing the
system, collecting the event traces and anayzing them. In the current prototype, the
principles of the event grammars and event traces are not implemented. The dynamic
QoS obtained using the current prototype contains simple pre-coded instrumentations that
empirically measure the values of the QoS parameters for the integrated system. The QoS
values under the column of Expected System QoS are the user QoS requirements. The

QoS values obtained by empirical testing are shown under the column called Dynamic

154

System QoS The difference between the expected and dynamic system QoS is shown
under the column called Deviation.

File Edit View Favorites Tools Help w

Dynamic System QoS ol

Barnk
BankCaszed
Bank»’éaséBj
CriticalUssCasshodsl3:

400,00 [1,188,00 | 788.00
1,500.00 I 841.00 95900

The dynamic system QoS meets the expected system QoS. =

Cancel HBack H Test Again] [Select Concrete Components] [Deploy

A

| >

Figure 7.13 View Provided by DynamicSystemValidation.jsp

A http://magellan.cs.iupui.edu:8585/USGF/jsp/ComponentDescripti... E”i
File Edit Wiew Favorites Tools Help

Component Description in UMM

Concrete Component: CashierTerminal

Informal Description: Provide GUI for cashiers.

Component Mame: CashierTerminal
Component Subcase: CashierTerminalCasze’
System MName: Bank
Domain Mame: Banking
Computational Aspect:
o a) Inherent Attributes:
a.1id (hostname:port/binding_name): columbus.cs.iupui.edu:9000/CashierTerminal
a.2 Version: version 1.0
a.3 Author: Zhisheng Huang
a.4 Date: August 2002
a.5 Validity: Yes
a6 Atomicity: Yes
a.7 Registration: magellan.cs.iupui.edu: 8500/HeadHunter
m 3.8 Model Java RMI Component Model
o b) Functional Attributes
= b1 Purpose: Act as GUI terminal for cashiers
m b2 Algorithm: JFC,
m b3 Complexity: O(1)
m b4 Syntactic Contract
m Provided Inferfaces
n [Customerianagement/|CustomerianagementCase
= [Accounttlanagement/|AccounttManagementCase
= |Validation/IValidationCase1
m Required Inferfaces
n [Customerianagement/|CustomertdanagementCasze
n [TransactionServertdanager/| TransactionServertdanagerCase
n |Accounthlanagement/lAccounttanagementCase
= |Validation/IValidationCase
m b5 Technology, Java Rl [

L
a1 PG b

Figure 7.14 View Provided by CompoenntDescription.jsp

155

7.3.3.1.11 View Provided by ComponentDescirption.jsp

Figures 7.14 and 7.15 illustrate the view provided by ComponentDescription.jsp.
Thisview displays the UMM specification for acomponent. The component can either be
an abstract component or a concrete component. The difference between the UMM
specification of an abstract component and that of a concrete component is discussed in
Chapter 3.

Eile Edit View Favorites Tools Help o

m b5 Technology: Java R, -~
m b6 Expected Resources: Memory: 25608, CPLU. 500mhz; W
m |7 Design Patterns: MA
m .8 Known Usages, MNiA
= b9 Alias: WA
e 5 Cooperation Aspect:
o a) PreProcessing Collaborators:
= MNone
o b) PostProcessing Collaborators
n DeluxeTransactionServer/DeluxeTransactionServerCase |
m EconomicTransactionServer/EconomicTransactionServerCase |
n CashierValidationServer/CashierValidationServerCase 1
» TransactionServerhlanager/TransactionServertdanagerCase

& 7 Auxiliary Aspect:
o a) Security: L2
o b} Mobility: Mo
o c) Fault-tolerance: L2

¢ 3. Quality of Service:
o QoS Metrics:

m Throughput{operationsisec)
m transfertoney. 984 .04
m checkBalance: 4721.67
m deposithoney: 1101.14
m withdrawhoney: 1023.34

= End-to-End Delay{ussc)
m transfertoney. 1016.22
m checkBalance: 211.79
m deposithoney: 90815
m withdrawhoney: 977.19

m QJos Level L2

m Cost L2

= Quality Level: L2

Figure 7.15 View Provided by ComponentDescription.jsp (Continued from Figure 7.14)

7.3.3.1.12 View Provided by UGDMKBGeneration.jsp

Figure 7.16 illustrates the view provided by UGDMKBGeneration.jsp. The view
displays a set of choices of different XML parsers to trandate UGDM models from XML
format into Oracle database. In the current prototype, seven parsers are avalable:

156

Abstract Component Model Parser (for UMM Specification), AMDNF (Component
Level) Parser, AMDNF (Function/Interface Level) Parser, AMDNF Mapping Parser
(Component Level to Function/Interface Level), Component Interaction Parser, AMDNF
and CUCM Mapping Parser (Function/Interface Level) and Abstract Component
Interface Model Parser. Details about each model are in Chapter 4 and Chapter 5. The
option of Reset Banking UGDMKB refreshes the UGDMKB with the UGDM of the

banking domain in XML formats by the above parsers.

A http://magellan.cs.iupui.edu:8585/USGI/jsp/usgi.jsp - Mi... B@

File Edit View Favorites Tools Help o
-~
UGDMKB Generation
Abstract Cumpunem Muodel Parser _ -
(Uhdtd Specification) | Bmwse Parse
AMDNF (Component Level) Parser | Browse...] m
AMDNMF (Functionfnterface Level) Parser | || Browse... m
_AMDNF Mapplng Parser [] -
;(Component Level to Functiondlnerface Level) 1 Browse... Parse
‘Component Interaction Model Parser | [Browse...] m
'AMDNF and CUCHM Mapping Parser i _ -
(Function/interface Level) L i Browse Parse
‘Abstract Component Interface Model Parser | Browse...] m
[Back |[ResetBanking UGDM |
w
£ >

Figure 7.16 View Provided by UGDMKBGeneration.jsp

7.3.3.2 Web Tier

The Web Tier consists of Web components, which are the controllers in the MVC

architecture. The controllers are responsible for coordinating the model and the view. The
Web Tier in the USGI also consists of several proxy classes, which help the connection

between Web Components in this tier and Business Components in the Business Tier.

157

Manual
¢ w7 ‘]

Automatic
Generation 12

16 15 |[€<—1 14 |€<— 13
L egends

H: home.html 9: DetermineAdapter Types.jsp
1: initiation.jsp 10 SelectConcreteComponents.j sp
2: usgi.jsp 11. DynamicComponentQoS.jsp
3: OrderWithoutNLP.jsp 12: AcquireAdapters.jsp
4: OrderWithNLP.jsp 13: StaticSystemVaidation.jsp
5. UGDMKBGeneration.jsp 14: BuildSystem.jsp
6: Order.jsp 15: DynamicSystemV alidation.jsp
7. AcquireConcreteComponents.jsp | 16: Deploy.jsp
8: AvailableConcreteComponents.jsp | 17: ComponentDescription.jsp

Figure 7.17 Flow between jsp Filesin USGI Implementation

7.3.3.2.1 Web Components

The Web Components in the USGI prototype implementation are JSP pages.
Figure 7.17 shows the major JSP pages in the prototype and their interactions to present
the views in alogical way to users. In the view provided by Order.jsp, the users have the
choices of the automatic system generation or the manual system generation. These
choices make the biggest difference in the flow of control in the JSP pages.
e home.html: Thisis NOT a JSP page. This html page serves as the starting point of the

USGI. It automatically redirects the control to initiation.jsp.

158

initiation.jsp: This JSP page does not provide a view. The purpose of this JSP pageis
to initidize a sesson for a wuser. Objects of OrderProcessorProxy,
SystemGenerator Proxy and UGDMKBGenerator Proxy are created and maintained in
the session bean to be used throughout a session. These proxies are the connections
between the Web Tier and the Business Tier. They are discussed in the next section.
usgi.jsp: This JSP page provides the top-level choices available in the prototype:
System Generation without NLP, System Generation with NLP and UGDMKB
Generation.

OrderWithoutNLP.jsp: This JSP page provides the starting interface to order a system
from the banking domain example without the natural language processing support. It
gathers information about an order in an order bean and passes the bean to Order .jsp.
OrderWithNLP.jsp: This JSP page provides the starting interface to place an order for
a system in a natural-language-like format. It shows an example order and shows to
the users whether an order is understood by the system or not. It passes the natural-
language-like order to the NLP in the business tier via the NLPProxy. It passes the
order bean return from the NLP to Order.jsp.

UGDMKBGeneration.jsp: This JSP page provides an access to a set of XML parsers
to parse information about a GDM in the XML format into an Oracle database. It
accesses the UGDMKBGenerator in the business tier via the
UGDMKBGenerator Proxy.

Order.jsp: This JSP page accepts order beans from either OrderWithoutNLP.jsp or
OrderWithNLP.jsp and passes the order bean to the OrderProcessor in the business
tier via the OrderProcessorProxy. It displays information about a system
specification returned from the OrderProcessor and passes the system specification to
AcquireConcreComponents.j sp.

AcquireConcreteComponents.jsp: This JSP page accepts the system specification
from Order.jsp and contacts the SystemGenerator in the Buiness Tier via the
SystemGeneratorProxy to obtain a list of concrete components for the required
abstract components indicated in the system specification. Then it passes the list of
concrete components to AvailableConcreteComponents., sp.

159

AvailableConcreteComponents.jsp: This JSP page provides the view of the lists of
concrete components that meets the requirements of the corresponding abstract
component. When the users click on the “Found” link, the page is forwarded to
SelectConcreteCompoennts.j sp.

SelectConcreteComponents.jsp: This JSP page displays al the concrete components
for an abstract component and prompts the users to select the required number of
concrete components from the available concrete components.
DynamicComponentQoS.jsp: This JSP page allows the dynamic testing of the QoS for
a concrete component to check if the advertised QoS is accurate or not. It compares
the results of the dynamic testing with the advertised values. If the dynamic testing
results are different from the advertised values, no corrective actions are possible in
the current prototype.

DetermineAdapter Types.jsp: When a set of concrete components are selected for
generating a DCS, this JSP page functions as an entry point to determine what kind of
adapters are needed if the selected concrete components are heterogeneous. It does so
by contacting the SystemGenerator in the Business Tier via the
SystemGeneratorProxy in thistier.

AcquireAdapters.jsp: If any adapter is needed to bridge the heterogeneous concrete
components, this JSP page contacts the SystemGenerator in the Business Tier viathe
SystemGener ator Proxy to get the necessary adapters.

SaticSystemValidation.jsp: This JSP is the starting point for static system QoS
validation, which is done by using the QoS Composition Mode through the
SystemGenerator in the Business Tier via the SystemGenerator Proxy. It displays the
static validation results.

BuildSystem.jsp: This JSP page is the starting point for configuring a system through
the SystemGenerator in the Business Tier via the SystemGeneratorProxy. It displays
to the users whether the configuration is successful or not.
DynamicSystemValidation.jsp: This JSP page is the starting point for the dynamic
validation of the system QoS and displays the validation results. It invokes the
SystemGenerator in the Business Tier viathe SystemGener ator Proxy.

160

Deploy.jsp: This JSP page displays the complete information about an integrated
system, including its order criteria, system specification, and static and dynamic QoS
validation value, etc.

ComponentDescription.jsp: This JSP page provides a detailed view that describes the
UMM specification about an abstract component or a concrete component. The UMM

specification is described in Chapter 3.

7.3.3.2.2 Proxy Classes

The proxy classes serve as the connectors between the Web Tier and the Business

Tier inthe USGI. There are four proxy classesin the USGI prototype implementation.

UGDMKBGenerator Proxy: This proxy class connects UGDMKBGenerator.jsp in the
Web Tier with the UGDMKBGenerator in the Business Tier.

OrderProcessorProxy: This proxy class connects Order.jsp in the Web Tier with the
OrderProcessor in the Business Tier.

SystemGeneratorProxy: This proxy class connects many JSP pages in the Web Tier
with the SystemGenerator in the Business Tier. The JSP pages connected by this
proxy class include: AcquireConcreteComponents.jsp, DynamicComponentQoS,jsp,
DetermineAdapter Types.jsp, AcquiredAdapters.jsp, StaticSystemValidation.jsp,
BuildSystem.jsp, DynamicSystemValidation.jsp.

NLPProxy: This proxy class connects OrderWithNLP.jsp in the Web Tier with the

NLP in the Business Tier.

7.3.3.2.3 Managing the State of a Session

Every user needs to track the information associated with the user requests and

the associated responses. In the JSP pages, an http session object maintains JavaBeans

that are specific to auser. The following state information is maintained.

161

e Order Requirements. The order requirements for a system are captured in an
OrderBean and passed on to the OrderProcessor in the Business Tier via the
Order Processor Proxy.

o System Secifications. The details of a system that can satisfy the order requirements
placed by a user include the system architecture ID at both component level and
function/interface level, the system critical use case model 1D, expected system QoS,
expected component QoS and required abstract components. This information is
captured in a JavaBean named SystemSpecification.

e System Blueprints: The complete information about an integrated system consists of
the order information and the system specification for the system as well as the static
and dynamic system validation results for the system, and the deployment
information. All thisinformation is captured in a JavaBean named SystemBlueprint.

7.3.3.3 Business Tier

The Business Tier consists of Business Components, which are a part of the Model

in the MV C architecture in the USGI prototype design. Business Components here refers
to standalone software units that provide services to components in other tiers or in the
same tier. The service provided could be a computational effort or an access to
underlying resources. Business Components can be remotely accessed using standard
communication protocols. The Business Components in the USGI prototype include
UGDMKBGenerator, OrderProcessor, NLP, SystemGenerator, URDS Proxy, and
Wrapper GlueGenerator _Proxy.

7.3.3.3.1 UGDMKBGenerator

Figure 7.18 shows the class diagram of the UGDMKBGenerator and the interface
it implements. The UGDMKBGenerator is invoked by the UGDMKBGeneratorProxy in
the Web Tier. The details of the UGDMKBGenerator and the associated interface are
provided below.

162

IUGDMKBGenerator: This remote interface publishes two methods.

e parse(): The purpose of this method is to trandate a file in the XML
format, which contains a model in the UGDM for a DCS domain, into an
Oracle database.

e resetBankingUGDM)(): The purpose of this method is to reset the banking
domain example in the Oracle database in case the information in the

database is corrupted.

IUGDMK BGenerator java.rmi.Uni castRemoteObj ect

UGDMKBGenerator

java.rmi.Remote

+ UGDMKBGenerator() { constructor}
+ main(String[] args): void { static} [r

IUGDMKBGenerator

+ parse(String fileName, String modelName): boolean { throws RemoteException}
+ resetBankingUGDM (): void { throws RemoteException}

Figure 7.18 Class Diagram for UGDMKBGener ator

UGDMKBGenerator: This class implements the remote interface IUGDMKBGenerator.
Currently the UGDMKBGenerator only implements part of the tasks outlined in Section
6.3.6. It only trandates the models from the XML format, which is defined for each
model in Appendix I, into the database by a set of XML parsers. These XML parsers use
Apache’s DOM parser technology [APAO3]. The XML parsers that are used by the
UGDMKBGenerator include:

e UMMSepcification XMLParser: This parser translates a UMM specification of an

abstract component from the XML format into an Oracle database.

163

e Architecture_Component XMLParser: This parser trandates an architecture
model in digunctive normal form at component level from the XML format into
an Oracle database.

e Architecture_Interface XMLParser: This parser translates an architecture model
in digunctive normal form at function/interface level from the XML format into
an Oracle database.

e Map_ Architectures XMLParser: This parser translates an architecture model
mapping from the XML format into an Oracle database.

e Component_Interaction XMLParser: This parser trandates a component
interaction model from the XML format into an Oracle database.

e Map Architecture CUCM_XMLParser: This parser trandates the mapping
between the architecture model in disjunctive normal form and the critical use
case model from the XML format into an Oracle database.

e AbstractComponentinterface XMLParser: This parser translates an abstract

component interface model from the XML format into an Oracle database.

7.3.3.3.2 Order Processor

Figure 7.19 shows the class diagram of OrderProcessor and the interface it
implements. The OrderProcessor is invoked by the OrderProcessorProxy in the Web
Tier.

|OrderProcessor: This remote interface publishes one method.

e order(): The purpose of this method is to determine the system
specification according to the user requirements by querying the database
that stores the UGDM. Currently, there are two options for this method in
the prototype implementation for the banking domain example: order with
the natural language processing support and order without the natura
language processing support.

e Order_simulation(): This method has the same functionaity as the one

above. The difference is that this method queries through local data

164

structures that ssimulate the functionality of the database that stores the
UGDM.

OrderProcessor: This class implements the interface |OrderProcessor. The
OrderProcessor implements the algorithm outlined in Section 3.7.8. The Order Processor
uses the UGDM in the Oracle database. It also uses the library of the QoS composition
and decomposition rules to derive the expected component QoS from the System QoS.
The QoS library for the banking domain example is implemented in the class
QCDM_Bank.

java.rmi.UnicastRemoteObject

T

+ OrderProcessor() { constructor} T

1OrderProcessor

OrderProcessor

java.rmi.Remote

+ main(String[] args): void { static}

|OrderProcessor <<interface>>

+ order(Object orderCriteria, int option): Object { throws RemoteException}
+ order_simulation(Object orderCriteria, int option): Object {throws RemoteException}

Figure 7.19 Class Diagram for OrderProcessor

7.3.3.3.3 System Generator
Figure 7.20 shows the class diagram of the SystemGenerator and the interface it
implements. The SystemGenerator is invoked by the SystemGeneratorProxy in the Web
Tier.
| SystemGenerator: This remote interface publishes 15 methods.
e acquireConcreteComponents(): This method takes a system specification
as its input. The system specification contains a list of required abstract

165

components. This method searches for each required abstract component
through QueryManager of the URDS via the URDS Proxy. It returns a
Hashtable containing one list of concrete components found for each
required abstract component. The keys for the Hashtable are the names of
the abstract components.

e acquireConcreteComponents simulation(): This method has the same
functionality as the one above. However, instead of looking for the
concrete components through the URDS it looks for the concrete
components in a local repository, which simulates the functionality of the
URDS.

@ java.rmi.UnicastRemoteObject

SystemGenerator
- wrapperGlueGenerator: |WrapperGlueGenerator
- urds_proxy: IURDS_Proxy]a\/arm| .Remote
+ SystemGenerator() { constructor}
+ main(String[] args): void { static} T

| SystemGenerator << interface>>

+ acquireConcreteComponents(SystemSpecification systemSpecification) : Hashtable { throws RemoteException}
+ acquireConcreteComponents_simulati on(SystemSpecification systemSpecification) : Hashtable
{throws RemoteException}
+ determineAdapter Types(SystemBluePrint systemBluePrint) : ArrayList { throws RemoteException}
+ determineAdapterTypes_simulation(SystemBluePrint systemBluePrint) : ArrayList { throws RemoteException}
+ acquireAdapters(ArrayList adapterTypeList) : Hashtable { throws RemoteException}
+ acquireAdapters_simulation(ArrayList adapterTypeList) : Hashtable { throws RemoteException}
+ getStaticSystemQoS(SystemBluePrint systemBluePrint) : SystemQoS { throws RemoteException}
+ assembleSystem(SystemBluePrint systemBluePrint) : boolean { throws RemoteException}
+ assembleSystem_simulation(SystemBluePrint systemBluePrint) : boolean { throws RemoteException}
+ assembleSystem_simulation_ugdmkb(SystemBluePrint systemBluePrint) : boolean { throws RemoteException}
+ getDynamicSystemQoS(SystemBluePrint systemBluePrint) : SystemQoS { throws RemoteException}
+ getDynamicSystemQoS_simulation (SystemBluePrint systemBluePrint) : SystemQoS
{throws RemoteException}
+ getDynamicComponentQoS(ConcreteComponent component) : ComponentQosS { throws RemoteException}
+ getDynamicComponentQoS_simulation (ConcreteComponent component) : ComponentQoS
{throws RemoteException}
+ generateSystem(SystemBluePrint systemBluePrint) : SystemBluePrint { throws RemoteException}

Figure 7.20 Class Diagram for SystemGenerator

166

determineAdapter Types(): This method takes as its input a
SystemBluePrint which consists of the selected concrete components for
assembling a system. This method consults the UGDM in the database to
determine what kinds of adapters are needed for assembling the system.
determineAdapter Types simulation(): This method has the same
functionality as the one above. However, instead of consulting the UGDM
in the database, it consults local data structures that simulate the
functionality of the database that stores the UGDM.

acquireAdapters(): This method takes as its input a list of required
adapters and acquires them through the URDS. If the URDS can not find
an adapter, it sends the query for that adapter to the
Wrapper GlueGenerator viathe Wrapper GlueGenerator_Proxy.
acquireAdapters simulation(): This method has the same functionality as
the one above. However, instead of looking for the adapters through the
URDS, it looks for the adapters in a local repository which simulates the
functionality of the URDS

getSaticSystemQoS(): This method takes as its input a SystemBlueprint
which consists of al the information necessary for assembling a system. It
calculates static system QoS by using QoS composition rules in the
QCDM_Bank library.

assembleSystem(): This method takes as its input a SystemBlueprint which
consists of al the information necessary for assembling a system and
assembl es the system by consulting the UGDM in the database.
assembleSystem simulation(): This method has the same functionality as
the one above. However, it does nothing but simply returns information to
indicate that the system was assembled successfully. This allows the
demonstration of the prototype without running the banking components.
assembleSysem simulation_ugdmkb(): This method has the same
functionality as the one above. However, instead of consulting the UGDM

167

in the database, it consults local data structures that simulate the
functionality of the database that stores the UGDM.

e getDynamicSystemQoS(): This method takes as its input a
SystemBlueprint. It dynamicaly calculates the system QoS using the
methods such as the event traces. In this prototype, the event traces are not
implemented. The dynamic system QoS is measured by the pre-coded
instructions.

e getDynamicSystemQoS simulation(): This method has the same purpose
as the one above. The difference is that this method only simulates the
activity of dynamically getting the system QoS. The simulation is done
through the random number generation.

e getDynamicComponentQoS(): This method takes as its input a
ConcreteComponent. It dynamically calculates the component QoS using
methods such as event traces. In this prototype, the event traces are not
implemented. The dynamic component QoS is measured by the pre-coded
instructions.

e getDynamicComponentQoS simulation(): This method has the same
purpose as the one above. The difference is that this method only
simulates the activity of dynamically getting the component QoS. The
simulation is done through the random number generation.

e generateSystem(): The purpose of this method is to generate a system
automatically. It implements the system generation process outlined in
Chapter 6. It achieves its purpose by a sequence of calls to other methods
defined in thisinterface.

SystemGenerator: This class implements the [SystemGenerator. The
SystemGenerator implements the algorithms outlined in Section 6.3.9. The
SystemGenerator uses the UGDM in the Oracle database. It also uses the library of the
QoS composition and decomposition rules to predict the static system QoS. The QoS

library for the banking domain example isimplemented in the class QCDM_Bank.

168

7.3.3.3.4 URDS_Proxy
Figure 7.21 shows the class diagram of the URDS Proxy and the interface it

implements. The URDS Proxy is invoked by the SystemGenerator in the Business Tier.

The URDS Proxy accesses the URDS aready implemented in the UniFrame research.

IURDS Proxy: This remote interface publishes two methods.

searchConcreteComponents(): This method takes as its input an abstract
component. It prepares a QueryBean for the abstract component and sends
the query to the QueryManager of the URDS. It returns a list of concrete
components found for the abstract component.
searchConcreteComponents_simulation(): This method has the same
function as the one above. However, instead of looking for the concrete
components through the URDS, it looks for concrete components in a
local repository which simulates the functionality of the URDS.

URDS Proxy: This class implements the IURDS Proxy. It accesses the URDS
through the interface published by the QueryManager in the URDS.

IURDS Proxy java.rmi.UnicastRemoteObject

‘F

URDS_Proxy

- queryManager: |QueryManager

+ URDS _Proxy() { constructor} {throws RemoteException}

javarmi.Remote

+ main(String[] args): void { static} T

IURDS_Proxy <<interface>>

+ searchConcreteComponents (AbstractComponent abstractComponent) : ArrayList { throws RemoteException}
+ searchConcreteComponents_simulation (AbstractComponent abstractComponent) : ArrayList

{throws RemoteException}

Figure 7.21 Class Diagram for URDS_Proxy

169

7.3.3.3.5 Natural Language Processor

Figure 7.22 shows the class diagram for the Natural Language Processor (NLP)
and the interface it implements. The NLP isinvoked by the NLP_Proxy in the Web Tier.

INLP: This remote interface publishes one method.

e order(): This method sends the natural-language-like system requirements
as specified in the argument to the natural language processing service. It
returns the system specification as an OrderBean.

NLP: This class implements the INLP. The NLP itself is a proxy that accesses the
natural language processing service created by the collaborators of the UniFrame
research at University of Alabama at Birmingham [LEEO2a]. The natural language
processing service implemented for this prototype is for the banking domain example.

@ javarmi.UnicastRemoteObject javarmi.Remote

INLP <<interface>>

NLP

+ NLP() { constructor}

+ main(String[] args): void { static} + order(String orderString): Object { throws RemoteException}

Figure 7.22 Class Diagram for NLP

7.3.3.3.6 WrapperGlueGenerator_Proxy

Figure 7.23 shows the class diagram for the Wrapper GlueGenerator_Proxy and
the interface it implements. The Wrapper GlueGenerator_Proxy is invoked by the
SystemGenerator in the Business Tier. The Wrapper GlueGenerator_Proxy accesses the
Wrapper GlueGenerator being implemented by University of Alabama at Birmingham
[CAO02, ZHA02], a collaborator of the UniFrame research.

170

|Wrapper GlueGenerator_Proxy: This remote interface publishes one method.

o generateWrapperGlue(): This method takes as its argument an
Adapter Type and forwards the request to the Wrapper GlueGenerator to
generate the required adapter.

Wrapper GlueGenerator_Proxy: |Wrapper GlueGenerator_Proxy is implemented
by this class. It is a proxy to access the Wrapper and Glue Generator service being
implemented by our collaborator at University of Alabama at Birmingham [CAQOQ2,
ZHAQ2].

IWrapperGl ueGenerato@

java.rmi.Uni castRemoteObject

T

WrapperGlueGenerator_Proxy
- wrapperGlueGeneraor: |WrapperGlueGenerator javarmi.Remote
+ WrapperGlueGenerator_Proxy() { constructor}
+ main(String[] args): void { static} T

|WrapperGlueGenerator_Proxy <<interface>>

+ generateWrapperGlue(Adapter Type addapterType): ConcreteComponent { throws RemoteException}

Figure 7.23 Class Diagram for Wrapper GlueGenerator _Proxy

7.3.3.4 Database Tier

The Database Tier is responsible for storing the persistent datain the USGI. The
persistent data in the USGI is the UGDM. The USGI maintains persistent data in an
Oracle database (version 8.1.7) which is a relational database. The data are stored in
database tables. These database tables store information about various models of the
UGDM. The creation and maintenance of the database tables are done by the

171

UGDMKBGenerator. The UGDM information in the database is used by the
OrderProcessor and the SystemGenerator in the USGI. The database is accessed and
updated through the JDBC technology.

7.3.3.4.1 Schemas for the Abstract Component Model
Figure 7.24 illustrates the schemas for the abstract component model in the
UGDM. The schemas consist of twelve tabless UMMSpecification, Algorithms,

Requiredinterfaces, Providedinterfaces, Technologies, ExpectedResour ces,
DesignPatterns, KnownUsages, Aliases, PreprocessingCollaborators,

PostprocessingCollaborators and QoSMetrics. Information about each abstract
component is stored in these twelve tables. The information reflects the UMM

specification (details are in Chapter 3) of a component in the UniFrame Approach.

7.3.3.4.1.1 UMM Specification Table

The UMM Specification table holds entries from a UMM specification that has no
more than one value for each abstract component. The columns in this table include those
that can identify an abstract component, such as ComponentName, DomainName and
SystemName, and those that are attributes of an abstract component, such as, Description,
HostID, Version, Author, CreationDate, Validity, Atomicity, Registration, Model,
Purpose, Complexity, Mobility, Security, FaultTolerance, QoSLevel, Cost and
QualityLevel. Each abstract component has exactly one entry in this table. An example of
a record of this table is <’ AccountDatabase’, ‘Banking’, ‘Bank’, ‘Provide an account
database service.”, ‘N/A’, ‘version 1.0°, ‘N/A’, ‘N/A’, ‘N/A’, ‘Yes, ‘N/A, ‘N/A’, ‘Serve
as an account database.’, ‘N/A’, ‘No’, ‘LO", ‘LO", ‘N/A’, ‘“N/A’, ‘N/A’>. The first three
entries in this example are the component name, domain name and system name

respectively. Therest are the values for the attributes stated above respectively.

Schema for UMM Secification

Schemafor Algorithms
Column Name Column Type
Column Name Column Type
ComponentName | VARCHAR
: ComponentName | VARCHAR
DomainName VARCHAR :
DomainName VARCHAR
SystemName VARCHAR
— SystemName VARCHAR
Description VARCHAR Algorithm VARCHAR
HostID VARCHAR g
Version VARCHAR)
Author VARCHAR Schema for Requiredinterfaces
CreatingDate VARCHAR Column Name Column Type
validity VARCHAR ComponentName | VARCHAR
Atomicity VARCHAR DomainName VARCHAR
Registration VARCHAR SystemName VARCHAR
Model VARCHAR Interface VARCHAR
Purpose VARCHAR
Complexity VARCHAR Schema for Providedlnterfaces
M obility VARCHAR Column Name Column Type
Security VARCHAR ComponentName | VARCHAR
FaultTolerance VARCHAR DomainName VARCHAR
QoSLeve VARCHAR SystemName VARCHAR
Cost VARCHAR Interface VARCHAR
QualityL evel VARCHAR
Schemafor Technologies Schema for ExpectedResources
Column Name Column Type Column Name Column Type
ComponentName | VARCHAR ComponentName | VARCHAR
DomainName VARCHAR DomainName VARCHAR
SystemName VARCHAR SystemName VARCHAR
Technology VARCHAR ExpectedResource | VARCHAR

Schema for DesignPatterns

Schema for KnownUsages

Column Name Column Type Column Name Column Type
ComponentName | VARCHAR ComponentName | VARCHAR
DomainName VARCHAR DomainName VARCHAR
SystemName VARCHAR SystemName VARCHAR
Pattern VARCHAR Usage VARCHAR

Schema for Aliases

Schema for PreprocessingCollaborators

Column Name Column Type Column Name Column Type
ComponentName | VARCHAR ComponentName | VARCHAR
DomainName VARCHAR DomainName VARCHAR
SystemName VARCHAR SystemName VARCHAR
Alias VARCHAR Collaborator VARCHAR
Schema for PostprocessingCol laborators Schema for QoSMetrics
Column Name Column Type Column Name Column Type
ComponentName | VARCHAR ComponentName | VARCHAR
DomainName VARCHAR DomainName VARCHAR
SystemName VARCHAR SystemName VARCHAR
Collaborator VARCHAR Metric VARCHAR

Figure 7.24 Schemas for Abstract Component Model in the UGDM

172

173

7.3.3.4.1.2 Algorithms Table

The Algorithms table holds the possible algorithms that may be used to implement
the concrete components for an abstract component. The columns in this table include
those that can identify an abstract component, such as ComponentName, DomainName
and SysemName, and another one for the name of a possible algorithm. One abstract
component can have multiple entries in this table. An example of arecord for thistableis
<’AccountDatabase’, ‘Banking’, ‘Bank’, ‘Merge Sort’>. The first three entries in this
example identify the abstract component and the last entry indicates that the Merge Sort
algorithm can be used to implement the concrete components for this abstract component.

7.3.3.4.1.3 Requiredinterfaces Table

The Requiredinterfaces table holds the required interfaces for an abstract
component. The columns in this table include those that can identify an abstract
component, such as ComponentName, DomainName and SysemName, and another one
for the name of arequired interface. One abstract component can have multiple entriesin
this table. An example of a record for this table is <'DeluxeTransactionServer’,
‘Banking’, ‘Bank’, ‘l1AccountDatabaseCasel’>. The first three entries in this example
identify the abstract component and the last entry indicates that the interface
| AcountDatabaseCasel is required by this abstract component.

7.3.3.4.1.4 Providedinterfaces Table

The Providedinterfaces table holds the provided interfaces for an abstract
component. The columns in this table include those that can identify an abstract
component, such as ComponentName, DomainName and SysemName, and another one
for the name of a provided interface. One abstract component can have multiple entriesin

this table. An example of a record for this table is <’AccountDatabase’, ‘Banking’,

‘Bank’, ‘IAccountDatabaseCasel’>. The first three entries in this example identify the

174

abstract component and the last entry indicates that the interface | AcountDatabaseCasel
is provided by this abstract component.

7.3.3.4.1.5 Techonologies Table

The Technologies table holds the possible technologies that may be used to
implement the concrete components for an abstract component. The columns in this table
include those that can identify an abstract component, such as ComponentName,
DomainName and SysemName, and another one for the name of the possible technology
that can be used to implement the abstract component. One abstract component can have
multiple entries in this table. An example of a record for this table is
<'AccountDatabase’, ‘Banking’, ‘Bank’, ‘Java RMI’>. The first three entries in this
example identify the abstract component and the last entry indicates that Java RMI may
be used to implement the concrete components for this abstract component.

7.3.3.4.1.6 ExpectedResources Table

The ExpectedResour ces table holds the possible resources that may be required by
the concrete components of an abstract component. The columns in this table include
those that can identify an abstract component, such as ComponentName, DomainName
and SysemName, and another one for the name of the possible resource. One abstract
component can have multiple entries in this table. An example of arecord for thistableis
<'AccountDatabase’, ‘Banking’, ‘Bank’, ‘Memory’>. The first three entries in this
example identify the abstract component and the last entry indicates that the memory is a

possible required resource by the concrete components for this abstract component.

7.3.3.4.1.7 DesignPatterns Table
The DesignPatterns table holds the possible design patterns that may be applied
to implement the concrete components for an abstract component. The columns in this

175

table include those that can identify an abstract component, such as ComponentName,
DomainName and SysemName, and another one for the name of the possible design
pattern. One abstract component can have multiple entries in this table. An example of a
record for this table is <’ AccountDatabase’, ‘Banking’, ‘Bank’, ‘Factory Pattern’>. The
first three entries in this example identify the abstract component and the last one
indicates that the factory pattern may be used to implement the concrete components for
the abstract component.

7.3.3.4.1.8 KnownUsages Table

The KnownUsages table holds the known application of an abstract component.
The columns in this table include those that can identify an abstract component, such as
ComponentName, DomainName and SysemName, and another one for the name of the
area that the abstract component is used. One abstract component can have multiple
entries in this table. An example of a record for this table is <’ AccountDatabase’,
‘Banking’, ‘Bank’, ‘Finance' >. The first three entries in this example identify the abstract
component and the last one indicates that this abstract component has been used in the
area of finance.

7.3.3.4.1.9 Aliases Table

The Aliases table holds the possible aliases of an abstract component. The
columns in this table include those that can identify an abstract component, such as
ComponentName, DomainName and SysemName, and another one for the name of a
possible alias for the abstract component. One abstract component can have multiple
entries in this table. An example of a record for this table is <’AccountDatabase’,
‘Banking’, ‘Bank’, ‘ AccountRepository’ >. The first three entries in this example identify
the abstract component and the last one indicates that AccountRepository is another name

for this abstract component.

176

7.3.3.4.1.10 PreprocessingCollaborators Table

The PreprocessingCollaborator s table holds the preprocessing collaborators of an
abstract component. The columns in this table include those that can identify an abstract
component, such as ComponentName, DomainName and SysemName, and another one
for the name of a preprocessing collaborator. One abstract component can have multiple
entries in this table. An example of a record for this table is <’AccountDatabase’,
‘Banking’, ‘Bank’, ‘DeluxeTransactionServer’>. The first three entries in this example
identify the abstract component and the last one indicates that DeluxeTransactionServer
is a preprocessing collaborator of this abstract component.

7.3.3.4.1.11 PostprocessingCollaborators Table

The PostprocessingCollaborators table holds the postprocessing collaborators of
an abstract component. The columns in this table include those that can identify an
abstract component, such as ComponentName, DomainName and SysemName, and
another one for the name of a postprocessing collaborator. One abstract component can
have multiple entries in this table. An example of a record for this table is
<'DeluxeTransactionServer’, ‘Banking’, ‘Bank’, ‘AccountDatabase’>. The first three
entries in this example identify the abstract component and the last one indicates that

AccountDatabase is a postprocessing collaborator of this abstract component.

7.3.3.4.1.12 QoSMetrics Table

The QoSMietrics table holds the QoS metrics of an abstract component that must
be validated when implemented. The columns in this table include those that can identify
an abstract component, such as ComponentName, DomainName and SysemName, and
another one for the name of a QoS metric. One abstract component can have multiple
entries in this table. An example of a record for this table is <’ AccountDatabase’,
‘Banking’, ‘Bank’, ‘throughput’>. The first three entries in this example identify the
abstract component and the last one indicates that throughput is a QoS parameter that

177

must be validated when the concrete components of the abstract component are

implemented.

Column Name Column Type Column Name Column Type
SystemName VARCHAR SystemName VARCHAR
CaseName VARCHAR CaseName VARCHAR
ComponentName | VARCHAR ComponentName | VARCHAR
ComponentSubcase | VARCHAR

Schema for MapArchitectures

Column Name | Column Type Column Name | Column Type
SystemName | VARCHAR SystemName VARCHAR
CaseNameFrom | VARCHAR Initiator VARCHAR
CaseNameTo VARCHAR Responder VARCHAR

Schema for AbstractComponentlnterface

Schema for Component! nteraction

Schema for MapArchitectureCUCM

Column Name Column Type Column Name Column Type
DomainName VARCHAR SystemName VARCHAR
SystemName VARCHAR CaseNameFrom VARCHAR
ComponentName | VARCHAR CaseNameTo VARCHAR
ComponentSubcase | VARCHAR

InterfaceType VARCHAR

InterfaceName VARCHAR

InterfaceSubcase VARCHAR

Figure 7.25 Schemas for Other Models in the UGDM

7.3.3.4.2 Schemafor the AMDNF at Component Level

The schemafor the Architecture Model in Digunctive Normal Form (AMDNF) at
Component Level is shown in Figure 7.25 as the database table ArchitectureComponent.
The columns in this table include SystemName, CaseName and ComponentName.
SystemName and CaseName together identify a case in the AMDNF at component level
in the UGDM. The ComponentName is the entry for a component that constitutes the

case. Thus each case can have multiple entries in this table. An example of a record for

178

thistable is <'Bank’, ‘BankCasel’, ‘CashierTermina’>. This example indicates that the
component CashierTerminal is part of the case BankCasel of the Bank system.

7.3.3.4.3 Schema for the AMDNF at Function/Interface Level

The schema for the Architecture Model in Digunctive Norma Form (AMDNF) at
Function/Inerface Level is shown in Figure 7.25 as the database table
Architecturelnterface. The columns in this table include SystemName, CaseName,
ComponentName and ComponentSubcase. SystemName and CaseName together identify
acase in the AMDNEF in the UGDM. The ComponentName is the entry for a component
that constitutes the case. The ComponentSubcase reveals the special information about
the interfaces of the component, such as the communication patterns. Each case can have
multiple entries in this table. However, for each {SystemName, CaseName,
ComponentName} triple, there is only one entry. An example of arecord for thistableis
<'Bank’, ‘BankCasel_1', ‘CashierTermina’, ‘CashierTerminalCasel’>. This example
indicates that the component CashierTerminal is part of the case BankCasel 1 of the
Bank system and the CashierTerminalCasel represents the interfaces of the
CashierTerminal.

7.3.3.4.4 Schema for the Architecture Model Mapping

The schema for the Architecture Model Mapping is shown in Figure 7.25 as the
database table MapArchitectures. The columns in this table include SystemName,
CaseNameFrom and CaseNameTo. SystemName identifies a system. The
CaseNameFrom indicates a case in the Architecture Model in Digunctive Norma Form
(AMDNF) at the component level. The CaseNameTo indicates a case in the AMDNF at
the function/interface level. The mapping is from CaseNameFrom to CaseNameTo. Each
{ SystemName, CaseNameFrom} pair can have only one entry in the database table. The
mapping is unidirectional. An example of arecord for thistableis <’Bank’, ‘BankCasel’,
‘BankCasel 1'>. This example indicates that for the Bank system, BankCasel (a case in

179

the AMDNF at the component level) is mapped to BankCasel 1 (acase in the AMDNF
at the function/interface level).

7.3.3.4.5 Schema for Component Interaction Model

The schema for the Component Interaction Model is shown in Figure 7.25 as the
database table Componentinteraction. The columns in this table include SystemName,
Initiator and Responder. SystemName identifies a system. The Initiator is the entry for
the abstract component that initiates an interaction. The Responder is the entry for the
abstract component that responds to the Initiator. For each Initiator, there can be multiple
entries in this table. For each Responder, there can aso be multiple entries in the table. If
two components in an interaction are peer-to-peer, then there should be two entries in the
database table for this kind of interaction. An example of a record for this table is
<'Bank’, ‘DeluxeTransactionServer’, ‘AccountDatabase’>. This example indicates that
in the Bank system, for the interaction between DeluxeTransactionServer and
AccountDatabase, the former component is the initiator and the latter component is the

responder.

7.3.3.4.6 Schema for Abstract Component Interface Model

The schema for the Abstract Component Interface Model is shown in Figure 7.25
as the database table AbstractComponentinterface. The columns in this table include
DomainName, SystemName, ComponentName, ComponentSubcase, InterfaceType,
InterfaceName and InterfaceSubcase. DomainName, SystemName, ComponentName and
ComponentSubcase together identify an abstract component at the function/interface
level. InterfaceName and InterfaceSubcase identify an interface. The InterfaceType
indicates the type of the interface in the entries of InterfaceName and InterfaceSubcase.
The value of InterfaceType is either Required or Provided. For each abstract component
at function/interface level, there can be multiple entries in this table. An example of a
record for this table is <'Banking, 'Bank’, ‘ AccountDatabase’,

180

‘AccountDatabaseCasel’, ‘Provided’, ‘IAccountDatabase’, ‘1AccountDatabaseCasel’ >.
Thefirst four entries in this example identify the abstract component. The last two entries
identify an interface and the fifth entry indicates that this interface is a provided interface

of the component.

7.3.3.4.7 Schemafor AMDNF and CUCM Mapping

The schema for the Architecture Model in Digunctive Normal Form (AMDNF)
and Critical Use Case Model (CUCM) Mapping at the function/interface level is shown
in Figure 7.25 as the database table MapArchitectureCUCM. The columns in this table
include SystemName, CaseNameFrom and CaseNameTo. SystemName identifies a
system. The CaseNameFrom is the entry for a case in the AMDNF at function/interface
level. CaseNameTo is the entry for a case in the Critical Use Case Model (CUCM) at
function/interface level. Each { SystemName, CaseNameFrom} pair can have only one
entry in the table. An example of a record for this table is <’Bank’, ‘BankCasel 1’,
‘CriticdlUseCaseModel3'>. This example indicates that in the Bank system,
BankCasel 1 (a case in the AMDNF a function/interface level) is mapped to
CriticalUseCaseModel 3 (a case in the CUCM at the function/interface level).

7.3.4 Experimental Results
This section provides the initial experimental results of using the USGPF to order
simple bank DCS from the banking domain example developed in Chapter 5. There are
two ordering schemes designed for this bank DCS family, one with the tabular ordering

language and the other one with the natural-language-like ordering language.

7.3.4.1 Ordering Scheme with Tabular Ordering Language

The tabular ordering language designed for the banking domain example is shown
in Table 5.39. The experiment was done with the following ordering criteria: 1) Bank

181

Type: Advanced Bank; 2) User Terminal (copy number): ATM (1 copy), Cashier
Terminal (1 copy); 4) System QoS. throughput > 700 operations/second, end to end delay
< 1500 microseconds. After placing the order, the OrderProcessor returned the following

system specification:

System Name: Bank
Architecture ID (Component Level): BankCasel
Architecture ID (Interface Level): BankCasel 1
Critical Use Case Model ID: Critical UseCaseModel 3
Expected System QoS:
Throughput (operations/second): 700.0
End to end delay (microsecond): 1500.0
Expected Component QoS:
EconomicTransactionServer:
transferM oney/throughput (operations/second): > 700.0 microsecond
transferM oney/endToEndDelay (microsecond): < 1500.0 operations/second
depositM oney/throughput (operations/second): > 700.0 microsecond
depositM oney/endToEndDelay (microsecond): <1500 operations/second
withdrawM oney/throughput (operations/second): > 700.0 microsecond
withdrawM oney/endToEndDelay (microsecond): < 1500.0 operations/second

Required Abstract Components. (Component Name/Component Subcase/Copy Number)
ATM/ATMCasel/1
CashierTerminal/CashierTerminal Casel/1
CashierValidationServer/CashierValidationServerCasel/1
CustomerV aidationSever/CustomerV alidationServerCasel/1
TransactionServerManager/TransactionServerMangerCasel/1
EconomicTransactionServer/EconomicTransactionServerCasel/1

The above system specification defines a system architecture that meets the
ordering requirements including the required abstract components, the expected system
QoS and the expected component QoS derived from the expected system QoS by the QoS
decomposition rules.

The next step is to generate the system based on this system specification. The
experiment was done with the option, Generate System (Manual), in order to interact
with the system generation process. The system specification was sent to the
SystemGenerator. The SystemGenerator firstly found the following concrete components
for the required abstract components via the URDS (the component ID for each concrete
component is listed):

182

ATM/ATMCasel:

1) magellan.cs.iupui.edu:9000/ATM

2) raleigh.cs.iupui.edu:9000/ATM

3) columnbus.cs.iupui.edu:9000/ATM
CashierTerminal/CashierTerminal Casel:

1) magellan.cs.iupui.edu:9000/ CashierTerminal

2) raeigh.cs.iupui.edu:9000/ CashierTerminal

3) columnbus.cs.iupui.edu:9000/ CashierTerminal
CashierValidationServer/CashierValidationServerCasel:

1) magellan.cs.iupui.edu:9000/ CashierV alidationServer

2) raleigh.cs.iupui.edu:9000/ CashierValidationServer

3) columnbus.cs.iupui.edu:9000/ CashierValidationServer

4) http://134.68.140.142:9000/Cashier ValidationServer
CustomerV alidationServer/CustomerV alidationServerCasel

1) magellan.cs.iupui.edu:9000/ CustomerV alidationServer

2) raeigh.cs.iupui.edu:9000/ CustomerV alidationServer

3) columnbus.cs.iupui.edu:9000/ CustomerV alidationServer
TransactionServerManager/TransactionServerM anagerCasel:

1) magellan.cs.iupui.edu:9000/ TransactionServerM anager

2) raleigh.cs.iupui.edu:9000/ TransactionServerManager

3) columnbus.cs.iupui.edu:9000/ TransactionServerManager
EconomicTransactionServer/EconomicTransactionServerCasel:

1) magellan.cs.iupui.edu:9000/ EconomicT ransactionServer

2) raleigh.cs.iupui.edu:9000/ EconomicTransactionServer

3) columnbus.cs.iupui.edu:9000/ EconomicTransactionServer

The concrete components found above are implemented in Java RMI, except
http://134.68.140.142:9000/CashierValidationServer (shown in the italic font in the
above list) which was implemented in .NET. In this experiment, the following concrete

components including the component in .NET were selected to generate a bank system:

magellan.cs.iupui.edu:9000/ATM
magellan.cs.iupui.edu:9000/ CashierTerminal
http://134.68.140.142:9000/CashierV alidationServer
raleigh.cs.iupui.edu:9000/ CustomerV alidationServer
columnbus.cs.iupui.edu:9000/ TransactionServerM anager
columnbus.cs.iupui.edu:9000/ EconomicTransactionServer

The dynamic component QoS for each component was tested and compared with
its advertised values. The deviations between the values were within 10%. The following

isatypical testing result for magellan.cs.iupui.edu: 9000/ Cashier Terminal:

183

Function Name/QoS Parameter: Advertised QoS Dynamic QoS Deviation
transferM oney/throughput (operations/second): 3198.47 3307.86 109.39
transferM oney/endToEndDelay (microsecond): 312.65 302.31 -10.34
depositM oney/throughput (operations/second): 3303.34 3417.12 113.78
depositM oney/endToEndDelay (microsecond): 302.72 292.64 -10.08
withdrawM oney/throughput (operations/second): 3513.33 3634.34 121.01
withdrawM oney/endToEndDelay (microsecond): 284.63 275.15 -9.48

Since the selected concrete components were heterogeneous, the
SystemGenerator determined that the following adapter type (defined in Chapter 6) was
required:

Bridge Type: JavaRMI - .NET

Preprocessing Component: CashierTerminal/CashierTerminal Casel

Postprocessing Component: CashierV alidationServer/CashierValidationServerCasel
Preprocessing Component Model: Java RMI

Postprocessing Component Model: .NET

In the next step, the SystemGenerator acquired the necessary adapter via the
URDS. The following adapter was found:
134.68.140.142:2400/CashierValidationServerAdaper. Then, the USGI daticaly
validated the possible system by deriving the predicted system QoS from the selected
concrete components based on the QoS composition rules, and compared the values with
the expected system QoS. The result is listed below:

QoS Parameter: Expected System QoS Predicted System QoS Deviation
throughput (operations/second): 700.00 1524.88 824.88
endToEndDelay (microsecond): 1500.00 655.79 -844.21

As shown above, the predicted system QoS met the expected system QoS. Thus,
the USGI configured the system with the selected concrete components and the required
adapter. After successful system assembly, the USGI validated the integrated system
dynamically for therea system QoS. The result is shown below:

QoS Parameter: Expected System QoS Predicted System QoS Deviation
throughput (operations/second): 700.00 1186.00 486.00
endToEndDelay (microsecond): 1500.00 843.00 -657.00

184

The above dynamic system QoS testing result demonstrated that the integrated
system met the expected system QoS. Thus the ordering requirements were fulfilled and
the system was ready to be deployed.

There are many possible combinations to integrate a bank system from the
concrete components found above. Some of these combinations may not generate
systems that can meet the ordering requirements (the system QoS requirements). These
combinations are eliminated and the best system is returned from the rest of feasible
combinations during the automatic system generation, which has not been implemented

yet in the prototype.

7.3.4.2 Ordering Scheme with Natural-lanquage-like Ordering L anguage

The experiment for this ordering scheme was done with the following natura-
language-like order, “Generate a bank system with 1 ATM and 1 cashier terminal. The
turn around time should be less than 1500 microseconds, and the throughput must be
greater than 700 operations/second”. These system requirements are compatible with the
one used in the previous section. When placing the order, this natural-language-like
statement was processed by a natural language processor into structured ordering
reguirements which ware sent to the OrderProcessor. The OrderProcessor returned the
same system specification as the one listed in the previous section. The rest of the system
generation process is exactly the same as the ordering scheme with the tabular ordering
language and is not repeated here.

This chapter describes in detail the design and implementation of a USGI
prototype using Java technology. The prototype implementation demonstrates the proper
design of the USGI architecture and various algorithms associated with the USGI. The
prototype implementation also demonstrates the fulfillment of the objectives outlined in
Chapter 1 for the USGPF. The next chapter will conclude this thesis with future work and

asummary.

185

8. CONCLUSION

This thesis presented the UniFrame System-Level Generative Programming
Framework (USGPF) for the purpose of automatic generation of DCS from DCS families
by seamlessly integrating heterogeneous geographically dispersed software components.
Section 8.1 presents an overview of the features of the USGPF followed by an overview
of the contributions of this work. Section 8.2 presents the possible future enhancements
to the USGPF. Section 8.3 concludes this thesis with a summation.

8.1 Outcome of the Study

The software solutions for the future DCS will require automatic or semi-
automatic integration of software components, while abiding by the QoS constraints
advertised by each component and the QoS requirements of the system. This thesis
describes the system-level generative programming of the UniFrame Approach that
alows an effective and efficient assembly of heterogeneous and distributed software
components to create a DCS from afamily of DCS specifications. The result of using the
UniFrame and the associated tools (such as the USGPF) leads to the automation of DCS
production while meeting both the functional and non-functional requirements of the
DCS. The USGPF and its effectiveness are demonstrated via a comprehensive banking
domain example.

There are many features of the USGPF proposed in thisthesis. These are:

e The USGPF has built-in QoS support.
e The UGDM captures the common and variable properties of a DCS
family, such as the component interactions, the communication patterns,

and the QoS composition and decomposition models.

186

The UGDP is a use-case driven, architecture-centric, iterative and
incremental process.

In the USGI, the application engineering process is guarded by the QoS in
order to create QoS-aware DCS.

A dynamic testing of the component QoS ensures the component meets its
advertised component QoS.

Double validations are designed to ensure that the QoS requirements are
met during the system generation. The double validations include static
and dynamic system QoS validations.

A general-purpose system generation framework separates the concerns of
the system generation logics from the domain dependent knowledge. The
separation of the UGDM from the system generator and the separation of
the concrete components from the system generator by the URDS are the
key designs to achieve this feature. This feature alows more flexibility

and maintainability.

The contributions of thisthesis are:

Definition of the UniFrame Generative Domain Model (UGDM). The
UGDM has an inherent consideration of the QoS requirementsto assist the
need of developing QoS-aware DCS.

Extension and enhancement of the work by [VANO2, VARO2] to create of
the UniFrame Domain Specific Language (UDSL) to document various
modelsin the UGDM in an informal fashion.

Creation of the UniFrame UGDM Development Process (UGDP) to
formulate a UGDM in assisting the development of a DCS family. The
UGDP has a built-in support to integrate QoS into the UGDM.
Development of a platform independent UniFrame System Generation
Infrastructure (USGI) for efficiently generating QoS-aware DCS by
seamlessly integrating heterogeneous distributed software components.
Implementation of a prototype for the USGI based on the J2EE™ model.
Validation of the USGPF by a detailed case study.

187

8.2 Future Work
Several future extensions to this research on the USGPF can be done. A few of
these are discussed below.

8.2.1 Future Work on the UGDM
Following enhancements to the UGDM are possible in the future:

e The evolution of the UDSL to be more comprehensive. For example,
developing a set of UDSL expressions to describe the event grammars
[AUGY95, AUGY97] to dynamicaly measure and validate the QoS
parameters in the UniFrame.

e The formaization of the UGDM representation. Currently the UGDM is
documented informally using the UDSL developed in this work. This
UGDM representation is then transformed into the XML format. Future
research work in this front will include the formal representation of the
UGDM using TLG [BRY 00, BRY 02, BRY 024].

8.2.2 Future Work on the UGDP

Currently the UGDP is not automated. The only tools created are a set of XML
parsers which can automatically input the UGDM from the XML format into an Oracle
database. The future work on the UGDP includes both the refinement and the automation
of the process.

The Generic Modeling Environment (GME) [GME] developed by Vanderbilt
University is an excellent tool that can be used to assist the UGDP. The GME is a
configurable toolkit for creating domain-specific modeling and program synthesis
environments. The configuration is accomplished through meta-models which specify the
modeling paradigm (modeling language) of the application domain. The modeling
paradigm contains all the syntactic, semantic, and presentation information regarding the
domain; which concepts will be used to construct models, what relationships may exist

188

among those concepts, how the concepts may be organized and viewed by the modeler,
and rules governing the construction of models. The modeling paradigm defines the
family of models that can be created using the resultant modeling environment.

There are several steps involved in using the GME to model the UGDM. First, a meta-
model is created to describe the possible relationship (such as or and alternative of the
feature description, see Chapter 4) and constraints (such as require, rgect and
mutual_require of the diagram constraint, see Chapter 4) that are used by the UGDM.
Second, an interpreter is written to tranglate any specific models created based on the
meta-model into the XML format defined for the models in the UGDM. The interpreter
implements the normalization and expansion rules and the constraint checking. It is
written in C++ with Visual Studio 6.0. Finaly, with the availability of a meta-model and
an associated interpreter, a specific model for the banking domain example is created and
interpreted into XML.

+, GME2000 - [Root] =181
File Edit View ‘Window Help &) x|

|« & |& BX 2ot 40 HesmmMET 2 Ho:mponents: |

| & T Hame [Foot [Faat #spect|Fealwetspect 7] Base: [HiA =

. Aggregatel 4|

|»

HER-SK

B -

s

& T Rot

; 3 oA

AL

UserYalidationSubsystemn
TramsactionSubsystem

AT

CashierTermingl:

¥ | -
EconomicTransactionSenver [
Deluerver | i
| 1

=17 Aliiibutes | Preferences |
C] [Fansactorubrymen
[anD = & il
=

relation with child nodes
Feature
Featursdspect L ﬂ

Ready iEIjﬁ_ !ID_U_ﬂfo_ i’Feature i-0-5_13-3-_PFf|“

o
h
j

Figure 8.1 Example of Generic Modeling Environment

189

Table 8.1 AMDNF in the XML format Created by the GME Interpreter

<?xm version='1.0" encodi ng="utf-8" ?>
<!-- generated automatically by feature nmetanodel interpreter
@003/ 3/ 21, 16: 49- - >
<architecture_conponent containment="XOR' selflsMandatory="TRUE">
<syst em nane>Bank</ syst em nane>
<case contai nment="AND' sel flsMandatory="FALSE">
<conponent sel f I sMandat or y="TRUE" >ATM</ conponent >
<conponent sel fl sMandat or y="TRUE" >Cust oner Val i dat i onSer ver </ conponent >
<conponent sel flsMandat ory="TRUE" >Tr ansact i onSer ver Manager </ conponent >
<conponent sel fl sMandat or y="TRUE" >Cashi er Ter m nal </ conponent >
<conponent sel fl sMandat or y="TRUE" >Cashi er Val i dati onSer ver </ conponent >
<conponent sel fl sMandat or y="TRUE" >Economni cTr ansact i onSer ver </ conponent >
</ case>
<case containment="AND' selflsMandatory="FALSE">
<conponent sel f I sMandat or y="TRUE" >ATM</ conponent >
<conponent sel fl sMandat or y="TRUE" >Cust oner Val i dati onSer ver </ conponent >
<conponent sel fl sMandat or y="TRUE" >Cashi er Ter m nal </ conponent >
<conponent sel flsMandat ory="TRUE" >Cashi er Val i dat i onSer ver </ conponent >
<conponent sel fl sMandat or y="TRUE" >Tr ansact i onSer ver Manager </ conponent >
<conponent sel fl sMandat or y="TRUE" >Del uxeTr ansact i onSer ver </ conponent >
<conponent sel f| sMandat or y="TRUE" >Account Dat abase</ conponent >
</ case>
<case containment="AND' selflsMandatory="FALSE">
<conponent sel fl sMandat or y="TRUE" >Cashi er Ter i nal </ conponent >
<conponent sel flsMandat ory="TRUE" >Cashi er Val i dati onSer ver </ conponent >
<conponent sel flsMandat ory="TRUE">Tr ansact i onSer ver Manager </ conponent >
<conponent sel fl sMandat or y="TRUE" >Economni cTr ansact i onSer ver </ conponent >
</ case>
<case containment="AND' selflsMandatory="FALSE">
<conponent sel fl sMandat or y="TRUE" >Cashi er Ter m nal </ conponent >
<conponent sel fl sMandat or y="TRUE" >Cashi er Val i dati onSer ver </ conponent >
<conponent sel fl sMandat or y="TRUE" >Tr ansact i onSer ver Manager </ conponent >
<conponent sel flsMandat or y="TRUE" >Del uxeTr ansacti onSer ver </ conponent >
<conponent sel fl sMandat or y="TRUE" >Account Dat abase</ conponent >
</ case>
</ archi t ecture_conponent >

Here is a brief example that indicates the use of the GME in the UGDP. This
example has been developed as a joint effort with Fei Cao [CAOOQ3], another researcher
in the UniFrame project. The example is about modeling the Architecture Model in
Hierarchica Form (AMHF) of the UGDM for the banking domain example, then
deriving the Architecture Model in Disunctive Normal Form (AMDNF) a component
level in the XML format. Figure 8.1 shows the AMHF at the component level. At the
lower-right corner of Figure 8.1 shows the interface to specify the relationship of the
node under focus (TransactionSubsystem in the figure) with its child-nodes in the
environment. The dashed lines in the figure denote the various kinds of dependencies or
constraints to be enforced between feature nodes. In this example, the XML created by
the GME (shown in Table 8.1) is completely compatible with the format needed by the

190

corresponding XML parser (shown in Appendix H) except that the case name for each
case is not assigned although the interpreter can be written to do so easily. For details of
how to use the GME to do the modeling, see the tutoria of the GME [GME].

8.2.3 Future Work on the USGI Architecture
Currently, the USGI architecture does not provide any modules to assist a
customized development of a DCS and there is no support for integrating user-supplied
proprietary components. These features might be necessary as the UGDM might not
capture al the possible details in a domain, and as markets usually change constantly
over time, the new requirements may also come up. So, addition of these features is

another avenue for the future work.

8.2.4 Future Work on the USGI Prototype
The future work on the USGI prototype involves more comprehensive and
complete implementation of the USGI architecture. Many implementational strategies
can be applied to enhance the prototype at an application level and make the
implementation more scalable, fault tolerance, maintainable, interoperable and secure.

Below asummary of these strategiesis provided.

8.2.4.1 Workload M anagement

The prototype implementation of the USGI design supports various services like

Order Processor, System Generator, UGDMKB Generator, Wrapper and Glue
Generator, and URDS It is desirable that these services be able to handle alarge number
of requests simultaneously without noticeable degradation in the performance. It is also
desirable that these services be available for most of the time. One way to achieve these
objectives is to deploy the services in a runtime environment with Workload

Management (WLM). An example of such a runtime environment is the IBM’s

191

WebSphere Application Server 4.0 [IBMO02]. WLM improves the performance,
scalability and reliability of an application by spreading multiple requests for a service
over resources that can accomplish the task. WLM distributes incoming requests across

application serversthat contain identical copies of the service.

8.2.4.2 Interoperability

In the current USGI prototype implementation, the service components are

implemented as Java-RM 1 based services which communicate with each other via JRMP.
An dternative is to implement these services as Enterprise JavaBeans. Enterprise
JavaBeans are deployed in the EJB container and they communicate with each other via
RMI-110P. Another alternative is to implement these services as SOAP-based services
like Web Services, in which the services communicate with each other via SOAP. These
protocols promote a greater interoperability than JRMP. Using SOAP for inter-
component communication removes the tight coupling that currently exists between the
service components. In addition, SOAP is afirewall-friendly protocol, thus, it can remove
the restrictions in the current USGI prototype implementation that the services have to be
located within the same subnet.

8.2.4.3 Asynchronous Communication

All the communication in the current USGI prototype implementation is
synchronous. One service waits on other services to return results. Making these
communications asynchronous and using remote event notification will allow a greater
flexibility, a higher system throughput and a better response time. The use of
asynchronous messaging alows the development of loosely-connected systems. These
systems are typically more resilient in the event of failures, and more easily extensible as
new applications are developed. Additionally, messaging provides an effective means of
transmitting events between applications. Asynchronous messaging can be incorporated
into the implementation using Java Message Service (JMS). The service components can

be implemented as EJB components which integrate with JMS, thus alowing the

192

enterprise beans to participate fully in loosely connected systems. The EJB service
components can then asynchronously notify other components of the occurrence of
events. Remote event notification features will alow the Model to notify the Controller

of changesin eventsin the model, which can be rendered as the View in the system.

8.2.4.4 System Security

In the current USGI prototype implementation, users of the system are not

authenticated and there is no notion of access levels that users may have. However, this
would be a desired feature, as service providers may not wish to advertise their services
to unauthorized users, or depending on the privileges the users possess, they may allow
access to only a certain set of functionality as opposed to others. The authentication
aspect for users can be handled through a form-based user id/password scheme. For
supporting users with different profiles, structuring the service components as EJB
components allows the implementation to leverage the role, based security services
offered by the EJB architecture.

8.3 Summary
This thesis has presented the UniFrame System-Level Generative Programming

Framework (USGPF), which facilitates a semi-automatic/automatic generation of a
distributed computing system from a system family. The UGDM defines various models
to capture the common and variable properties of a family of distributed computing
systems. The USGPF has built-in characteristics of the QoS to assist creating QoS-aware
distributed computing systems. The USGPF coupled with the UniFrame Approach
presents a promising solution for creating DCS by integrating geographically scattered,
heterogeneous software components. The results of applying this approach in the semi-
automatic construction of simple DCS from a banking domain are promising and

demonstrate the effectiveness of this research.

APPENDICES

193

APPENDICES

APPENDIX A: The Normalization Rules and Expansion Rules for Feature Description

This appendix contains the normalization rules (see Table A.1) and expansion rules (see
Table A.2) for feature description and correspondent brief description of the rules. The

material comes from van Deursen [van02].

Table A.1 Normalization Rules for Feature Description

Normalization Rules

Rules:

[N1] Fs, F, Fs, F?, Fs’ =Fs F Fs,Fs’
[N2] Fs,F, Fs, F, Fs’ =Fs, F,Fs,Fs’
[N3] F?? =F?

[N4] all(F) =F

[N5] all(Fs, all(Ft), Fs') =al(Fs, Ft, Fs)
[N6] one-of(F) F

[N7] one-of(Fs, one-of(Ft), Fs)
[N8] one-of(Fs, F?, Fs')

[N9] more-of(F) F

[N10] more-of(Fs, more-of(Ft), Fs') more-of(Fs, Ft, Fs')
[N11] more-of(Fs, F?, Fs) =more-of(Fs, F, Fs))?
[N12] default = A =A

one-of(Fs, Ft, Fs')
one-of(Fs, F, Fs')?

Table A.1 presents the normalization rules for feature description. Here are the brief
descriptions of each rule.

e N1 combines mandatory and optional featuresin alist.

e N2 removesduplicatesin alist.

e N3 joinsduplicate optionals.

194

N4-N5 normalize special cases of all. Nested alls are flattened.

N6-N7 normalize specia cases of one-of. Nested one-ofs are flattened.

N8 transforms a one-of containing one optional feature into an optional one-of.
N9-N10 normalize special cases of more-of. Nested more-ofs are flattened.

N11 transforms a more-of containing one optional feature into an optional more-
of.

N12 eliminates the default = annotation.

Table A.2 Expansion Rules for Feature Description

Expansion Rules

Rules:

[E1] all(Fs, F?, Ft) = one-of(all(Fs, F, Ft), all(Fs, Ft))

[E2] all(Ft, F?, Fs) = one-of(all(Ft, F, F), all(Ft, Fs))

[E3] all(Fs, one-of(F, Ft), Fs') = one-of(all(Fs, F, Fs), all(Fs, one-of(Ft), Fs'))
[E4] all(Fs, more-of(F, Ft), FS) =one-of(all(Fs, F, Fs),

all(Fs, F, more-of(Ft),Fs),
all(Fs, more-of(Ft), Fs'))

Table A.2 presents the expansion rules for feature description. Here are the brief

descriptions of each rule.

El, E2 trandates an all containing an optional feature expression in two cases:
one with and one without the feature.

E3 trandates an all containing a one-of in two cases: one with the first alternative
and one with the one-of with the first alternative removed.

E4 trandates an all containing a more-of into three cases: one with the first
alternative, one with the first alternative and the remaining more-of, and one with

only the remaining more-of.

195

APPENDIX B: Component Diagrams in the Banking Domain Example

This appendix consists of component diagrams for all cases of bank systems identified by
the architecture model in digunctive normal form at component level for the banking

domain example. Totally there are four cases.

1 1.
[Cashier
ValidationServer]
..*
1
[Transaction
ServerManager]
1

[Economic
—L_ Transaction
Server]

[Customer
ValidationServer]

Figure B.1 Component Diagram of BankCasel
for the Banking Domain Example

1 1x
[Cashier — - -
% ValidationServer] —1L, [CashierTerminal]
*
1
[Transaction
ServerManager]
1

[Deluxe] [Account
—L_ Transaction Database]
Server]

[Customer
ValidationServer]

Figure B.2 Component Diagram of BankCase2
for the Banking Domain Example

1 1.*
[Cashier = - -
% ValidationServer] —1 [CashierTerminal]
1
[Transaction
ServerManager]

Figure B.3 Component Diagram of BankCase3
for the Banking Domain Example

[Economic
—L_ Transaction
Server]

i 1 1.*
[Cashier
ValidationServer]
[Transaction
ServerManager]

Figure B.4 Component Diagram of BankCase4
for the Banking Domain Example

[Account
Database]

196

197

APPENDIX C: Sequence Diagrams in the Banking Domain Example

This appendix consists of the sequence diagrams for al the use cases in the banking

domain example.

e ValidateUsers
This use case has two cases, ValidateUsers Cashier and ValidateUsers Customer.
The first case is to vaidate users who are cashiers. The second case is to validate
users who are customers. The sequence diagrams for these two cases are shown in

Figure C.1 and C.2 respectively.

Enter cashier ID
and password

validation status := validate()

 Display validation status

Figure C.1 Sequence Diagram of ValidateUsers Cashier

i Custome ATM :CustomerV alidationServer |

Enter account number
and password

validation status:= validate()

Display validation status

Figure C.2 Sequence Diagram of ValidateUsers Customer

198

Login-exitAccount
This use case has two cases, Login-exitAccount Cashier and Login-

exitAccount_Customer. The first caseisto login and exit when users are cashiers. The
second case is to login and exit when users are customers. The sequence diagrams for

these two cases are shown in Figure C.3 and C.4 respectively.

icashier :CashierTerminal | ‘TransactionServerManager |

Login account (Enter
account number :
and account type) Transaction Server ID := loainAccount() |

I

Login account successfully

Exit account (Enter
account number
and account type)

exitAccount()

Exit account successfullv

Figure C.3 Sequence Diagram of Login-exitAccount_Cashier

i Customer ‘ATM | :TransactionServerManager

Login account (Enter
account number ;
and account type) Transaction Server 1D = lodinAccount() |

Login account successfully

Exit account (Enter
account number
and account type)

exitAccount()

Exit account successfullv

Figure C.4 Sequence Diagram of Login-exitAccount_Customer

DepositMoney

There are four cases in this use case. Figure C.5 illustrates the first case, in which the
users ae cashiers and the transaction subsystem consists of
EconomicTransactionServer. Figure C.6 illustrates the second case, in which the
users are cashiers and the transaction subsystem consists of DeluxeTransactionSer ver

199

and AccountDatabase. Figure C.7 the third case, in which the users are customers and
the transaction subsystem consists of EconomicTransactionServer. Figure C.8
illustrates the fourth case, in which the users are customers and the transaction

subsystem consists of DeluxeTransactionServer and AccountDatabase.

Cashier :CashierTerminal | :TransactionServerManager | | :EconomicTransactionServer

Enter account number
and account type

Transaction Server ID = loainAccount()

D

Login account successfully

Enter deposit amount

deposit()

Deposit successfully

Exit account

exitAccount()

Exit account successfullv

Figure C.5 Sequence Diagram of DepositMoney (Case 1)

Cashier :CashierTerminal | | :TransactionServerManager | | :DeluxeTransactionServer || :AccountDatabase

Enter account number
and account type

1 Transaction Server ID := loginAccount()

[

Login account successfully

Enter deposit amount

deposit() Account := getAccount()

deposit() g saveAccount()

Deposit successfully

Exit account

exitAccount()

Exit account successfullv

Figure C.6 Sequence Diagram of DepositMoney (case 2)

200

Customer ‘ATM | “TransactionServerManager | | :EconomicTransactionServer

Enter account type

Transaction Server ID := loainAccount()

U

Login account successfully

Enter deposit amount

deposit()

Deposit successfully

Exit account

exitAccount()

Exit account successfullv

Figure C.7 Sequence Diagram of DepositMoney (case 3)

Customer ‘ATM | :TransactionServerManager | | :DeluxeTransactionServer || :AccountDatabase

Enter account type

Transaction Server ID := lodinAccount()

Login account successfully

Enter deposit amount

deposit() Account := getAccount()

deposit() g saveAccount()

Deposit successfully

Exit account

exitAccount()

Exit account successfullv

Figure C.8 Sequence Diagram of DepositMoney (case 4)

e WithdrawMoney
There are four cases in this use case. Figure C.9 illustrates the first case, in which the

users ae cashiers and the transaction subsystem consists of

201

EconomicTransactionServer. Figure C.10 illustrates the second case, in which the
users are cashiers and the transaction subsystem consists of DeluxeTransactionSer ver
and AccountDatabase. Figure C.11 the third case, in which the users are customers
and the transaction subsystem consists of EconomicTransactionServer. Figure C.12
illustrates the fourth case, in which the users are customers and the transaction
subsystem consists of DeluxeTransactionServer and AccountDatabase.

TransferMoney

There are four cases in this use case. Figure C.13 illustrates the first case, in which
the wusers ae cashiers and the transaction subsystem consists of
EconomicTransactionServer. Figure C.14 illustrates the second case, in which the
users are cashiers and the transaction subsystem consists of DeluxeTransactionServer
and AccountDatabase. Figure C.15 the third case, in which the users are customers
and the transaction subsystem consists of EconomicTransactionServer. Figure C.16
illustrates the fourth case, in which the users are customers and the transaction
subsystem consists of DeluxeTransactionServer and AccountDatabase.

Cashier :CashierTerminal | :TransactionServerManager | | :EconomicTransactionServer

Enter account number
and account type

>T] Transaction Server ID := loginAccount()

ﬂ

Login account successfully

Enter withdraw amount

withdraw()

Withdraw successfully

Exit account

exitAccount()

Exit account successfullv

Figure C.9 Sequence Diagram of WithdrawMoney (Case 1)

202

Cashier

:CashierTerminal |

| :TransactionServerManager | | :DeluxeTransactionServer || :AccountDatabase

Enter account number
and account type

Login account successfully

Transaction Server ID := Inninkccoun{(\

[

Enter withdraw amount

Withdraw successfully

withdraw()

withdraw() g

Account := getAccount()

saveAccount()

Exit account

Exit account successfullv

exitAccount()

Figure C.10 Sequence Diagram of WithdrawMoney (case 2)

Customer

Enter account type

Login account successfully

| :EconomicTransactionServer

| Transaction Server ID := loginAccount()

Enter withdraw amount

Withdraw successfully

withdraw()

D

| :TransactionServerManager |

Exit account

Exit account successfullv

exitAccount()

Figure C.11 Sequence Diagram of WithdrawMoney (case 3)

203

Customer | :TransactionServerManager | | :DeluxeTransactionServer || :AccountDatabase |

Enter account type

= Transaction Server ID := loginAccount()

Login account successfully

Enter withdraw amount

withdraw() Account := getAccount()

withdraw() g saveAccount()

Withdraw successfully

Exit account

exitAccount()

Exit account successfullv

Figure C.12 Sequence Diagram of WithdrawMoney (case 4)

Cashier :CashierTerminal | | :TransactionServerManager | | :EconomicTransactionServer
Enter account number ;
and account type (From) Transaction Server 1D := loginAccount()
Login account successfully I:I

Enter account number | |
and account type (To) | Transaction Server ID := loainAccount()

Login account successfully

Enter transfer amount

transfer()

Transfer successfully

Exit account (To) H exitAccount()

Exit account successfully ”
<
Exit account (From) _ exitAccount()
Exit account successfully]

Figure C.13 Sequence Diagram of TransferMoney (case 1)

204

Cashier

:CashierTerminal |

Enter account number
and account type (From)

Login account successfully

Transaction Server ID = Ioaih:Accoum(\

Enter account number
and account type (To)

Transaction Server ID := loai

Login account successfully

nAccount()

| :TransactionServerManager | | :DeluxeTransactionServer || :AccountDatabase

Account := getAccount()(To, From)

saveAccount()(To, FromL

<
Enter transfer amount
transfer()
transfer() g
Transfer successfully
Exit account (To) exitAccount()
Exit account successfully ”
Exit account (From) exitAccount()
Exit account successfully [|
Figure C.14 Sequence Diagram of TransferMoney (case 2)
Customer ‘ATM

Enter account number
and account type (From)

| :TransactionServerManager | | :EconomicTransactionServer

Login account successfully

Transaction Server ID = IouiniAccount(\

Enter account number
and account type (To)

Login account successfully

D

Transaction Server ID := loainAccount()

N
Enter transfer amount

Transfer successfully

transfer()

Exit account (To)

exitAccount()

Exit account successfully

Exit account (From)

exitAccount()

Exit account successfully

Figure C.15 Sequence Diagram of TransferMoney (case 3)

i Customer

Enter account number
and account type (From)

Login account successfully

205

| :TransactionServerManager | | :DeluxeTransactionServer || :AccountDatabase

Transaction Server ID := IouirjAccoum(\

Return Transaction Server ID I:I

Enter account number
and account type (To)

Login account successfully
—

Transaction Server ID = Iouianccount(\

Enter transfer amount

Transfer successfully

transfer()

Account := getAccount()(To, F

transfer() g

rom)

saveAccount()(To, From)

Exit account (To)

Exit account successfully

exitAccount()

Exit account (From)

Exit account successfully

-

exitAccount()

Figure C.16 Sequence Diagram of TransferMoney (case 4)

OpenAccount

The users of this use case are cashiers. There are two cases in this use case. Figure

C.17 illustrates the first case, in which the transaction subsystem consists of

EconomicTransactionServer. Figure C.18 illustrates the second case, in which the

transaction subsystem consists of DeluxeTransactionServer and AccountDatabase.

CloseAccount

The users of this use case are cashiers. There are two cases in this use case. Figure

C.19 illustrates the first case, in which the transaction subsystem consists of

EconomicTransactionServer. Figure C.20 illustrates the second case, in which the

transaction subsystem consists of DeluxeTransactionServer and AccountDatabase.

206

Cashier :CashierTerminal |

| :TransactionServerManager | | :DeluxeTransactionServer || :AccountDatabase |

Enter account number,
customer name

and account type

onenAccount()

Return Transaction Server 1D
and account number

openAccount()

Open successfully and
return account number

saveAccount()

Figure C.17 Sequence Diagram of OpenAccount (case 1)

Cashier :CashierTerminal |

| :TransactionServerManager | | :EconomicTransactionServer

Enter account number,
customer name

and account type

opnenAccount()

Return Transaction Server ID
and account number

openAccount()

Open successfully and
return account number

Figure C.18 Sequence Diagram of OpenAccount (case 2)

Cashier :CashierTerminal

Enter account number
and account type

Remove successfully

Transaction Server ID = cIoasjeAccoum()

closeAccount()

| :TransactionServerManager | | :DeluxeTransactionServer || :AccountDatabase

removeAccount()

Figure C.19 Sequence Diagram of CloseAccount (case 1)

| :TransactionServerManager | | :EconomicTransactionServer

Cashier :CashierTerminal |

Enter account number
and account type

Remove successfully

Transaction Server |D := cloaseA|

ccount()

closeAccount()

Figure C.20 Sequence Diagram of CloseAccount (case 2)

207

208

APPENDIX D: Function Summary of Abstract Components
in the Banking Domain Example

This appendix documents function summaries for all the abstract components in the
banking domain example. These include function summaries for TransactionManager
(Table D.1), CashierTerminal (Table D.2), ATM (Table D.3), AccountDatabase (Table
D.4), DeluxeTransactionServer (Table D.5), EconomicTransactionServer (Table D.6),
CashierValidationServer (Table D.7), CustomerValidationServer (Table D.8).

Table D.1 Function Summary for TransactionManager

TransactionServerM anager

Actions

Inputs

Outputs

Communication Pattern

loginAccount() | Account Number, Account Type | Transaction Server ID | two-way-synchronous

exitAccount() | Account Number, Account Type | NONE two-way-synchronous

openAccount() | Account Number, Account Type | Account Number, two-way-synchronous
Account Type,

Transaction Server |D

closeAccount()

Account Number, Account Type

Transaction Server |D

two-way-synchronous

Table D.2 Function Summary for CashierTerminal

CashierTermina
Actions Inputs Outputs | Communication

Pattern

validate() Cashier 1D, Password Validation | two-way-
Status synchronous

deposit() Account Number, Account Type, Deposit NONE two-way-
Amount synchronous

withdraw() Account Number, Account Type, Withdraw NONE two-way-
Amount synchronous

transfer() Account Number (from), Account Type (from), | NONE two-way-
Account Number (to), Account Type (to), synchronous

Transfer Amount

checkBalance() | Account Number, Account Type NONE two-way-
synchronous

openAccount() | Customer Name, Account Number, Account Account two-way-
Type Number synchronous

closeAccount() | Account Number, Account Type NONE two-way-
synchronous

Table D.3 Function Summary for ATM

209

ATM
Actions Inputs Outputs | Communication
Pattern
validate() Account Number, Password Validation | two-way-
Status synchronous
deposit() Account Number, Account Type, Deposit NONE two-way-
Amount synchronous
withdraw() Account Number, Account Type, Withdraw NONE two-way-
Amount synchronous
transfer() Account Number (from), Account Type (from), NONE two-way-
Account Number (to), Account Type (to), synchronous
Transfer Amount
checkBalance() | Account Number, Account Type NONE two-way-
synchronous
Table D.4 Function Summary for AccountDatabase
AccountDatabase
Actions Inputs Outputs | Communication Pattern
getAccount() Account Number, Account Type | Account | two-way-synchronous or
two-way-asynchronous
saveAccount() Account NONE | two-way-synchronous or
two-way-asynchronous
removeAccount() | Account Number, Account Type | NONE | two-way-synchronous or
two-way-asynchronous
Table D.5 Function Summary for DeluxeTransactionServer
DeluxeT ransactionServer
Actions Inputs Outputs | Communication
Pattern
deposit() Account Number, Account Type, Deposit NONE two-way-
Amount synchronous
withdraw() Account Number, Account Type, Withdraw NONE two-way-
Amount synchronous
transfer() Account Number (from), Account Type (from), | NONE two-way-
Account Number (to), Account Type (to), synchronous
Transfer Amount
checkBalance() | Account Number, Account Type NONE two-way-
synchronous
openAccount() | Customer Name, Account Number, Account Account two-way-
Type Number synchronous
closeAccount() | Account Number, Account Type NONE two-way-
synchronous

Table D.6 Function Summary for EconomicTransactionServer

210

EconomicTransactionServer

Actions Inputs Outputs | Communication
Pattern
deposit() Account Number, Account Type, Deposit NONE two-way-
Amount synchronous
withdraw() Account Number, Account Type, Withdraw NONE two-way-
Amount synchronous
transfer() Account Number (from), Account Type (from), | NONE two-way-
Account Number (to), Account Type (to), synchronous
Transfer Amount
checkBalance() | Account Number, Account Type NONE two-way-
synchronous
openAccount() | Customer Name, Account Number, Account Account | two-way-
Type Number | synchronous
closeAccount() | Account Number, Account Type NONE two-way-
synchronous

Table D.7 Function Summary for CashierValidationServer

CashierValidationServer

Actions

Inputs

Outputs | Communication Pattern

validate()

Cashier ID, Password

Validation | two-way-synchronous
Status

Table D.8 Function Summary for CustomerValidationServer

CustomerValidationServer

Actions

Inputs

Outputs | Communication Pattern

validate() | Account number, Password

Validation | two-way-synchronous
Status

211

APPENDIX E: Interface Model for the Banking Domain Example

This appendix consists of the interface model for the banking domain example. The
model consists of interface descriptions for ITransactionServerManager (Table E.1),
IValidation (Table E.2), 1AccountManagement (Table E.3), IAccountDatabase (Table
E.4) ande |Customer Management (Table E.5).

Table E.1 Interface Description for | AccountDatabase

|AccountDatabase

1. Syntax

Account getAccount(String accountNumber, int accountType);
Pre: values have been provided for the accountNumber and accountType.
Post: if the specified account exits, return the account; otherwise return NULL.
Invariant: accountNumber, accountType
Communication Pattern: cp2s or cp2a
Description: This function returns an account object as identified by the parameters. It

returns null if the account specified does not exist.

void saveAccount(Account account);
Pre: account isvalid
Post: the database has been updated appropriately.
Invariant: account
Communication Pattern: cp2s or cp2a
Description: This function updates the account if it already exists; otherwise it adds an

entry in the database for this new account.

void removeA ccount(String accountNumber, int accountType);
Pre: values have been provided for the account and accountType
Post: the account specified is removed and the database has been updated appropriately
Invariant: accountNumber, accountType
Communication Pattern: cp2s or cp2a
Description: This function removes the specified account if it exists; otherwise it does
nothing.

2. Variation

| AccountDatabase: one-of (I AccountDatabaseCasel, | AccountDatabaseCase?)
| AccountDatabaseCasel: { cp2s}

| AccountDatabaseCase?: { cp2a}

3. Default
| AccountDatabase: | AccountDatabaseCasel

Table E.2 Interface I Validation for the banking domain Example

IValidation

1. Syntax
boolean validate(String id, String password);
Pre: values have been provided for id and password.
Post: return true if the id and password are valid; otherwise, return false.
Invariant: id, password
Communication Pattern: cp2s
Description: This function validates aid/password pair.

2. Variation
IValidation: IValidationCasel
IValidationCasel: { cp2s}

Table E.3 Interface | AccountManagement for the banking domain Example

| AccountM anagement

1. Syntax
void deposit(double amount, String acountNumber, int accountType);
Pre: amount > 0 && account exists
Post: if the account exists, account balance increased by amount
otherwise throw BankingException(*“ Account Not Exists”)
Invariant: account.balance >=0
Communication Pattern: cp2s
Description: This function deposits the money into an account.
void withdraw(double amount, String accountNumber, int accountType);
pre: amount > 0 && amount <= account.balance, account exits
post : if the account exists, account balance decreased by amount
otherwise throw BankingException(* Account Not Exist”)
Invariant: account.balance > = 0;
Communication Pattern; cp2s
Description: This function withdraws money from an account.
void transfer(double amount, String accountNumberFrom, int accountTypeFrom,
String accountNumberTo, int accountTypeT o)
pre: amount > 0 & & amount <= account(from).balance, account exits
post: account(to).balance increased by the amount
Invariant: account(from).balance >= 0 & & account(to).balance >= 0
Communication Pattern: cp2s
Description: This function transfers money from one account to another
double checkBalance(String accountNumber, int accountType);
pre : account exits
post : if the account exists, return the balance
otherwise throw BankingException(“ Account Not Exist”)
Invariant: account.balance does not change
Communication Pattern; cp2s
Description: This function checks the balance of an account

2. Variation
| AccountM anagement: | AccountM anagementCasel
| AccountManagementCasel: { cp2s}

212

Table E.4 Interface Description for | TransactionServer Manger

213

| TransactionServerM anager

1. Syntax
String loginAccount (String accountNumber, int accountType);
Pre: values have been provided for accountNumber and accountType.
Post: If login successful, lock the account and return the account server addres; otherwise,
return null.
Invariant: accountNumber, accountType.
Communication Pattern: cp2s
Description: This function checksif the specified account exists. If the account exists and
isunlocked, it locks the account and returns the transaction server address for the
account; otherwise it returns null.
void exitAccount(String accountNumber, int accountType);
Pre: values have been provided for accountNumber and accountType.
Post: If the account is locked, unlock the account; otherwise, do nothing.
Invariant: accountNumber, accountType
Communication Pattern: cp2s
Description: This function checksif the specified account exists. If the account exists and
islocked, it unlocks the account; otherwise it does nothing.
Accountlnfo openAccount (String accountNumber, int accountType);
Pre: The account specified by the accountNumber and accountType does not exist. The
value for accountTypeis either 1 or 2.
Post: an account is opened.
Invariant: accountNumber, accountType.
Communication Pattern: cp2s
Description: This function checksif the account identified by accountNumber and
acountType exists on the transaction server manger. |f the account does not exist, it
creates this account and identifies the transaction server for manage this account. I
the accountNumber is null, it assigns an account number. It returns the account
number, account type and transaction server address in an Accountlnfo object.
String closeAccount (String accountNumber, int accountType);
pre: values have been provided for accountNumber and accountType.
post: the specified account is closed
Invariant: accountNumber and accountType.
Communication Pattern: cp2s
Description: This function removes the specified account from the transaction server
manager for a customer if the account exists and returns the transaction server
address so that the account can be removed from the database; otherwise it does
nothing and returns null.

2. Variation
| TransactionServerManger: | TransactionServerM anger Casel
| TransactionServerMangerCasel: { cp2s}

214

Table E.5 Interface | Customer Management for the banking domain Example

| CustomerM anagement

1. Syntax
void openAccount (String customerName, String accountNumber, int accountType) throws
BankingException;
Pre: The account specified by the accountNumber and accountType does not exist. The value
for accountTypeiseither 1 or 2.
Post: An account is opened
Invariant: customerName, accountNumber, accountType.
Communication Pattern; cp2s
Description: This function creates an account for a customer if the account identified by
accountNumber and accountType does not exist; otherwise it throws the exception that
the BankingException with the message “ The Account Already Exists’. If the
accountTypeisinvalid, it throws the BankingException with the message “Invalid
Account Type".
void closeAccount(String accountNumber, int accountType);
pre: account exists, the balance in the account is 0
post: if the account exists and the balance is O, delete the account, if the account exists and the
balance is not 0, throw BankingException(“ Account Not Empty”), otherwise throw
BankingException(“ Account Already Exists’)
Invariant: accountNumber, accountType.
Communication Pattern; cp2s
Description: This function closes an account.

2. Variation
| CustomerM anagement: | CustomerM anagementCasel
| CustomerManagementCasel: { cp2s}

215

APPENDIX F: Abstract Component Model for the Banking Domain Example

This appendix consists of the abstract component model for the banking domain example.
The model includes UMM Specifications for AccountDatabaseCasel (Table F.1 and
Table F.2), AccountDatabaseCase2 (Table F.3), DeluxeTransactionServer Casel (Table
F.4), DéduxeTransactionServerCase2 (Table F.5), ATMCasel (Table F.6),
CashierTerminalCasel (Table F.7), CusotmerValidationServerCasel (Table F.8),
CashierValidationServerCasel (Table F.9), TransactionServerManagerCasel (Table
F.10), and EconomicTransactionServerCasel (Table F.11).

Table F.1 UMM Specification for AccountDatabaseCasel

Abstract Component: AccountDatabaseCasel
1. Component Name: AccountDatabase
2. Component Subcase: AccountDatabaseCasel
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide an account database service.
6. Computational Attributes:
6.1 Inherent Attributes:
6.1.1id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A
6.2 Functional Attributes:
6.2.1 Function description: Serve as an account database.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract
6.2.4.1 Provided Interface: | AccountDatabaseCasel
6.2.4.2 Required Interface: NONE
6.2.5 Technology: N/A
6.2.6 Expected Resources. N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE
7. Cooperation Attributes
7.1 Preprocessing Collaborators: DeluxeTransactionServer Casel
7.2 Postprocessing Collaborators: NONE
8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: LO
8.3 Fault tolerance: LO
(Continued in Table F.2)

Table F.2 UMM Specification for AccountDatabaseCasel
(Continued from Table F.1)

(Continued from Table F.1)
9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

Table F.3 UMM Specification for AccountDatabaseCase2

Abstract Component: AccountDatabaseCase2
1. Component Name: AccountDatabase
2. Component Subcase: AccountDatabaseCase2
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide an account database service.
6. Computational Attributes:
6.1 Inherent Attributes:
6.1.1id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A
6.2 Functional Attributes:
6.2.1 Function description: Serve as an account database.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract
6.2.4.1 Provided Interface: | AccountDatabaseCase2
6.2.4.2 Required Interface: NONE
6.2.5 Technology: N/A
6.2.6 Expected Resources. N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE
7. Cooperation Attributes
7.1 Preprocessing Collaborators: DeluxeTransactionServer Case2
7.2 Postprocessing Collaborators: NONE
8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: LO
8.3 Fault tolerance: LO
9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

216

Table F.4 UMM Specification for DeluxeTransactionServer Casel

Abstract Component: DeluxeTransactionServer Casel
1. Component Name: DeluxeTransactionServer
2. Component Subcase: DeluxeTransactionServer Casel
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide transaction service in banking.
6. Computational Attributes:
6.1 Inherent Attributes:
6.1.1id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A
6.2 Functional Attributes:
6.2.1 Function description: Act as transaction server in banking.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract
6.2.4.1 Provided Interface: | AccountManagementCasel,
| CustomerManagementCasel
6.2.4.2 Required Interface: 1 AccountDatabaseCasel
6.2.5 Technology: N/A
6.2.6 Expected Resources. N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE
7. Cooperation Attributes
7.1 Preprocessing Collaborators: Cashier Terminal Casel, ATMCasel
7.2 Postprocessing Collaborators: AccountDatabaseCasel
8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: LO
8.3 Fault tolerance: LO
9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

217

Table F.5 UMM Specification for DeluxeTransactionServer Case2

Abstract Component: DeluxeTransactionServer Case2
1. Component Name: DeluxeTransactionServer
2. Component Subcase: DeluxeTransactionServer Case2
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide transaction service in banking.
6. Computational Attributes:
6.1 Inherent Attributes:
6.1.1id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A
6.2 Functiona Attributes:
6.2.1 Function description: Act as transaction server in banking.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract
6.2.4.1 Provided Interface: | AccountManagementCasel,
| Customer ManagementCasel
6.2.4.2 Required Interface: 1 AccountDatabaseCase2
6.2.5 Technology: N/A
6.2.6 Expected Resources. N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE
7. Cooperation Attributes
7.1 Preprocessing Collaborators: Cashier Terminal Casel, ATMCasel
7.2 Postprocessing Collaborators: AccountDatabaseCase?
8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: LO
8.3 Fault tolerance: LO
9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

218

219

Table F.6 UMM Specification for ATMCasel

Abstract Component: ATMCasel
1. Component Name: ATM
2. Component Subcase: ATMCasel
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide GUI for ATM.
6. Computational Attributes:
6.1 Inherent Attributes:
6.1.1id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A
6.2 Functional Attributes:
6.2.1 Function description: Act as ATM.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract
6.2.4.1 Provided Interface: | AccountManagementCasel, | ValidationCasel,
| AccountManagementCasel
6.2.4.2 Required Interface: 1 AccountManagementCasel, |ValidationCasel,
| AccountManagementCasel, | TransactionServerManager Casel
6.2.5 Technology: N/A
6.2.6 Expected Resources. N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE
7. Cooperation Attributes
7.1 Preprocessing Collaborators: NONE
7.2 Postprocessing Collaborators: TansactionServerManager Casel,
CustomerValidationServer Casel, DeluxeTransactionServer Casel,
DeluxeTransactionServer Case2, EconomicTransactionServer Casel
8. Auxiliary Attributes:
8.1 Mohility: No
8.2 Security: LO
8.3 Fault tolerance: LO
9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

220

Table F.7 UMM Specification for Cashier Terminal Casel

Abstract Component: Cashier Terminal Casel
1. Component Name: Cashier Terminal
2. Component Subcase: Cashier Terminal Casel
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide GUI for cashiers.
6. Computational Attributes:
6.1 Inherent Attributes:
6.1.1id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A
6.2 Functional Attributes:
6.2.1 Function description: Act GUI terminal for cashiers.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract
6.2.4.1 Provided Interface: | AccountManagementCasel, | ValidationCasel,
| AccountManagementCasel
6.2.4.2 Required Interface: 1 AccountManagementCasel, |ValidationCasel,
| AccountManagementCasel, | TransactionServerManager Casel
6.2.5 Technology: N/A
6.2.6 Expected Resources. N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE
7. Cooperation Attributes
7.1 Preprocessing Collaborators: NONE
7.2 Postprocessing Collaborators: TansactionServerManager Casel,
CustomerValidationServer Casel, DeluxeTransactionServer Casel,
DeluxeTransactionServer Case2, EconomicTransactionServer Casel
8. Auxiliary Attributes:
8.1 Mohility: No
8.2 Security: LO
8.3 Fault tolerance: LO
9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

Table F.8 UMM Specification for CustomerValidationServer Casel

221

Abstract Component: CustomerValidationServer Casel
1. Component Name: CustomerValidationServer
2. Component Subcase: Customer ValidationServer Casel
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide ATM validation service in banking.
6. Computational Attributes:
6.1 Inherent Attributes:
6.1.1id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A
6.2 Functiona Attributes:

6.2.1 Function description: Act as validation server for ATMs in banking.

6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract
6.2.4.1 Provided Interface: | ValidationCasel
6.2.4.2 Required Interface: NONE
6.2.5 Technology: N/A
6.2.6 Expected Resources. N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE
7. Cooperation Attributes
7.1 Preprocessing Collaborators: ATMCasel
7.2 Postprocessing Collaborators: NONE
8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: LO
8.3 Faullt tolerance: LO
9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

Table F.9 UMM Specification for CashierValidationServer Casel

222

Abstract Component: CashierValidationServer Casel
1. Component Name: CashierValidationServer
2. Component Subcase: CashierValidationServer Casel
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide Cashier validation service in banking.
6. Computational Attributes:
6.1 Inherent Attributes:
6.1.1id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A
6.2 Functional Attributes:

6.2.1 Function description: Act as validation server for Cashiers in banking.

6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract
6.2.4.1 Provided Interface: I ValidationCasel
6.2.4.2 Required Interface: NONE
6.2.5 Technology: N/A
6.2.6 Expected Resources. N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE
7. Cooperation Attributes
7.1 Preprocessing Collaborators: Cashier Terminal Casel
7.2 Postprocessing Collaborators: NONE
8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: LO
8.3 Fault tolerance: LO
9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

223

Table F.10 UMM Specification for TransactionServer Manager Casel

Abstract Component: TransactionServerManager Casel
1. Component Name: TransactionServer Manager
2. Component Subcase: TransactionServer Manager Casel
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide transaction server management service in banking.
6. Computational Attributes:
6.1 Inherent Attributes:
6.1.1id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A
6.2 Functiona Attributes:
6.2.1 Function description: Act as transaction server manager for ATMsin banking.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract
6.2.4.1 Provided Interface: | TransactionServerManager Casel
6.2.4.2 Required Interface: NONE
6.2.5 Technology: N/A
6.2.6 Expected Resources. N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE
7. Cooperation Attributes
7.1 Preprocessing Collaborators: Cashier Terminal Casel, ATMCasel
7.2 Postprocessing Collaborators: NONE
8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: LO
8.3 Fault tolerance: LO
9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

Table F.11 UMM Specification for EconomicTransactionServer Casel

224

Abstract Component: EconomicTransactionServer Casel
1. Component Name: EconomicTransactionServer
2. Component Subcase: EconomicTransactionServer Casel
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide transaction service in banking.
6. Computational Attributes:
6.1 Inherent Attributes:
6.1.1id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A
6.2 Functiona Attributes:
6.2.1 Function description: Act as transaction server in banking.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract
6.2.4.1 Provided Interface: | AccountManagementCasel,
| Customer ManagementCasel
6.2.4.2 Required Interface: 1 AccountDatabaseCasel
6.2.5 Technology: N/A
6.2.6 Expected Resources. N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE
7. Cooperation Attributes
7.1 Preprocessing Collaborators: Cashier Terminal Casel, ATMCasel
7.2 Postprocessing Collaborators: NONE
8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: LO
8.3 Fault tolerance: LO
9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

225

APPENDIX G: QoS Composition and Decomposition Rules
for the Banking Domain Example

This appendix consists of the QoS composition and decomposition rules for the banking
domain example derived from the QoS composition and decomposition meta-rules stated
in Table 5.38. These rules are organized into four sets: QoS composition rules for
throughput (Table G.1), QoS composition rules for endToEndDelay (Table G.2), QoS
decomposition rules for throughput (Table G.3), and QoS decomposition rules for
endToEndDelay (Table G.4).

Table G.1 QoS Composition Rules for throughput for the Banking Domain Example

QoS Composition Rules for throughput for the Banking Domain Example

System_throughput = [Critical UseCaseM odel I nstance] _throughput
[CriticalUseCaseM odel I nstance]_throughput = min ({ CriticalUseCase} _throughput)

1/DepositMoneyCasel 1 throughput = 1/CashierTerminal .deposit_throughput +
1/DeluxeT ransactionServer.deposit_throughput + 1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveAccount_throughput

1/DepositMoneyCasel 2_throughput = 1/CashierTerminal .deposit_throughput +
1/min(DeluxeTransactionServer.deposit_throughput, AccountDatabase.getAccount_throughput,
AccountDatabase.saveAccount_throughput)

1/DepositMoneyCase?_throughput = 1/CashierTerminal.deposit_throughput +
1/EconomicServer.deposit_throughput

V/WithdrawMoneyCasel 1 throughput = 1/CashierTerminal .withdraw_throughput +
1/DeluxeT ransactionServer.withdraw_throughput + 1/AccountDatabase.getAccount_throughput
+ 1/AccountDatabase.saveAccount_throughput

L/WithdrawMoneyCasel 2 throughput = 1/CashierTermina QoS.withdraw.throughput +
1/min(DeluxeTransactionServer.withdraw_throughput,
AccountDatabase.getAccount_throughput, AccountDatabase.saveAccount_throughput)

L/WithdrawMoneyCase2_throughput = 1/CashierTerminal .withdraw_throughput +
1/EconomicServer.withdraw_throughput

UTransferMoneyCasel 1 throughput = 1/CashierTerminal.transfer_throughput +
1/DeluxeTransactionServer.transfer_throughput + 1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveA ccount_throughput

VTransferMoneyCasel 2_throughput = 1/CashierTerminal.transfer_throughput +
I/min(DeluxeTransactionServer.transfer_throughput, AccountDatabase.getAccount_throughput,
AccountDatabase.saveAccount_throughput)

UTransferMoneyCase2_throughput = 1/CashierTerminal.transfer_throughput +
1/EconomicServer.transfer_throughput

Table G.2 QoS Composition Rules for endToEndDelay
for the Banking Domain Example

226

QoS Composition Rules for endToEndDelay for the Banking Domain Example

SystemQoS.endToEndDelay = [CriticalUseCaseModel | nstance]_endToEndDelay
[CriticalUseCaseM odelInstance]_endToEndDelay = max ({ CriticalUseCase} _endToEndDelay)

DepositMoneyCasel 1 endToEndDelay = sum(CashierTerminal .deposit_endToEndDelay,
DeluxeTransactionServer.deposit_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

DepositMoneyCasel 2 _endToEndDelay = sum(CashierTerminal .deposit_endToEndDelay,
DeluxeTransactionServer.deposit_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

DepositMoneyCase2_endToEndDelay = sum(CashierTerminal.deposit_endToEndDelay,
EconomicTransactionServer.deposit_endToEndDel ay)

WithdrawMoneyCasel 1 endToEndDelay = sum(CashierTerminal .withdraw_endToEndDelay,
DeluxeT ransactionServer.withdraw_endToEndDel ay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

WithdrawMoneyCasel 2 _endToEndDelay = sum(CashierTerminal .withdraw_endToEndDelay,
DeluxeTransactionServer.withdraw_endToEndDel ay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDel ay)

WithdrawMoneyCase?2_endToEndDelay = sum(CashierTerminal.withdraw_endToEndDelay,
EconomicTransactionServer.withdraw_endToEndDelay)

TransferMoneyCasel 1 endToEndDelay = sum(CashierTerminal.transfer_endToEndDelay,
DeluxeTransactionServer.transfer_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

TransferMoneyCasel 2 _endToEndDelay = sum(CashierTerminal.transfer_endToEndDelay,
DeluxeTransactionServer.transfer_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

TransferMoneyCase?2_endToEndDelay = sum(CashierTerminal.transfer_endToEndDelay,
EconomicTransactionServer.transfer_endToEndDelay)

Table G.3 QoS Decomposition Rules for throughput
for the Banking Domain Example

QoS Decomposition Rules for Throughput for Bank

[CriticalUseCaseM odel | nstance]_throughput > System_throughput
{CriticalUseCase} _throughput > System_throughput

<DepositMoneyCasel 1> throughput > System_throughput
CashierTerminal .deposit_throughput > System_throughput
DeluxeTransactionServer.deposit_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput
<DepositMoneyCasel 2> throughput > System_throughput
CashierTerminal.deposit_throughput > System_throughput
DeluxeT ransactionServer.deposit_throughput > System_throughput
AccountDatabase.getAccount_throughput > System throughput
AccountDatabase.saveAccount_throughput > System_throughput
<DepositMoneyCase?2>_throughput > System_throughput
CashierTerminal .deposit_throughput > System_throughput
EconomicTransactionServer.deposit_throughput > System_throughput
<WithdrawMoneyCasel 1> throughput > System_throughput
CashierTerminal .withdraw_throughput > System_throughput
DeluxeTransactionServer.withdraw_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput
<WithdrawMoneyCasel 2> throughput > System_throughput
CashierTerminal.withdraw_throughput > System_throughput
DeluxeTransactionServer.withdraw_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput
<WithdrawMoneyCase2>_throughput > System_throughput
CashierTerminal .withdraw_throughput > System_throughput
EconomicTransactionServer.withdraw_throughput > System_throughput
<TransferMoneyCasel 1> throughput > System_throughput
CashierTerminal.transfer_throughput > System_throughput
DeluxeTransactionServer.transfer_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughtput > System_throughput
<TransferMoneyCasel 2> throughput > System_throughput
CashierTerminal.transfer_throughput > System_throughput
DeluxeTransactionServer.transfer_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughtput > System_throughput
<TransferMoneyCase2>_throughput > System_throughput
CashierTerminal.transfer_throughput > System_throughput
EconomicTransactionServer.transfer_throughput > System throughput

227

Table G.4 QoS Decomposition Rules for endToEndDelay
for the Banking Domain Example

[CriticalUseCaseM odel Instance]_endToEndDelay < System_endToEndDelay
{CriticallUseCase} _endToEndDelay < System endToEndDelay

<DeposistMoneyCasel 1> endToEndDelay < System_endToEndDelay
CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.deposit_endToEndDelay < System endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay
<DeposistMoneyCasel 2> endToEndDelay < System_endToEndDelay
CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.deposit_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay
<DeposistMoneyCase2>_endToEndDelay < System_endToEndDelay
CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
EconomicTransactionServer.deposit_endToEndDelay < System_endToEndDelay
<WithdrawMoneyCasel 1> endToEndDelay < System_endToEndDelay
CashierTermina .withdraw_endToEndDelay < System endToEndDelay
DeluxeT ransactionServer.withdraw_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay
<WithdrawMoneyCasel 2> endToEndDelay < System_endToEndDelay
CashierTermina.withdraw_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.withdraw_endToEndDelay < System endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay
<WithdrawMoneyCase2> endToEndDelay < System endToEndDelay
CashierTermina .withdraw_endToEndDelay < System_endToEndDelay
EconomicTransactionServer.withdraw_endToEndDelay < System endToEndDelay
<TransferMoneyCasel 1> endToEndDelay < System endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.transfer_endToEndDelay < System _endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay
<TransferMoneyCasel 2> endToEndDelay < System endToEndDelay
CashierTerminal.transfer_endToEndDelay < System _endToEndDelay
DeluxeTransactionServer.transfer_endToEndDelay < System _endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay
<TransferMoneyCase2>_endToEndDelay < System_endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay
EconomicTransactionServer.transfer_endToEndDelay < System endToEndDelay

228

229

APPENDIX H: QoS Composition and Decomposition Model
for the Banking Domain Example

This appendix consists of the QoS Composition and Decomposition Model (QCDM) for
the banking domain example. The model consists of the QoS composition and
decomposition rules for the three cases of the Critica Use Case Mode in disunctive
normal form in the banking domain example. Table H.1 and Table H.2 illustrate the rules
for CriticalUseCasel. Table H.3 and H.4 illustrate the rules for CriticalUseCase2. Table
H.5 and Table H.6 illustrate the rules for Critical UseCases3.

Table H.1 QCDM for CriticalUseCasel

QoS Composition and Decomposition Model for CriticalUseCasel

1. QoS Composition Rules for throughput

System_throughput = CriticaluseCasel_throughput

CriticalUseCasel_throughput = min (DepositMoneyCasel_1 throughput,
WithdrawMoneyCasel 1 throughput, TransferMoneyCasel 1 throughput)

1/DepositMoneyCasel 1 throughput = 1/CashierTerminal.deposit_throughput +
1/DeluxeTransactionServer.deposit_throughput + 1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveA ccount_throughput

1/WithdrawMoneyCasel 1 throughput = 1/CashierTerminal .withdraw_throughput +
1/DeluxeTransactionServer.withdraw_throughput + 1/AccountDatabase.getAccount_throughput
+ 1/AccountDatabase.saveAccount_throughput

1/TransferMoneyCasel 1 throughput = 1/CashierTerminal .transfer_throughput +
1/DeluxeTransactionServer.transfer_throughput + 1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveAccount_throughput

2. QoS Composition Rules for endToEndDelay

SystemQoS.endToEndDelay = CriticalUseCasel _endToEndDelay

CriticalUseCasel_endToEndDelay = max (DepositMoneyCasel 1 endToEndDelay,
WithdrawMoneyCasel 1 endToEndDelay, TransferMoneyCasel 1 endToEndDelay)

DepositMoneyCasel 1 endToEndDelay = sum(CashierTerminal.deposit_endToEndDelay,
DeluxeTransactionServer.deposit_endToEndDelay,
AccountDatabase.getAccount_endToEndDel ay,
AccountDatabase.saveAccount_endToEndDel ay)

WithdrawMoneyCasel 1 endToEndDelay = sum(CashierTerminal.withdraw_endToEndDelay,
DeluxeTransactionServer.withdraw_endToEndDel ay,
AccountDatabase.getAccount_endToEndDel ay,
AccountDatabase.saveAccount_endToEndDel ay)

TransferMoneyCasel 1 endToEndDelay = sum(CashierTerminal.transfer_endToEndDel ay,
DeluxeTransactionServer.transfer_endToEndDelay,
AccountDatabase.getAccount_endToEndDel ay,
AccountDatabase.saveAccount_endToEndDel ay)

(Continued in Table H.2)

Table H.2 QCDM for CriticalUseCasel (Continued from Table H.1)

230

QoS Composition and Decomposition Model for CriticalUseCasel
(Continued from Table H.1)

3. QoS Decomposition Rules for throughput
CriticalUseCasel_throughput > System_throughput
DepositMoneyCasel 1 _throughput > System_throughput
WithdrawMoneyCasel _1_throughput > System_throughput
TransferMoenyCasel_1_throughput > System_throughput

<DepositMoneyCasel 1> throughput > System_throughput
CashierTerminal.deposit_throughput > System_throughput
DeluxeTransactionServer.deposit_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

<WithdrawMoneyCasel 1> throughput > System_throughput
CashierTerminal .withdraw_throughput > System_throughput
DeluxeT ransactionServer.withdraw_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

<TransferMoneyCasel 1> throughput > System_throughput
CashierTerminal .transfer_throughput > System_throughput
DeluxeTransactionServer.transfer_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughtput > System_throughput

4. QoS Decomposition Rules for endToEndDelay
CriticalUseCasel_endToEndDelay < System _endToEndDelay
DepositMoneyCasel 1 _endToEndDelay < System _endToEndDelay
WithdrawMoneyCasel 1 _endToEndDelay < System _endToEndDelay
TransferMoenyCasel 1 endToEndDelay < System_endToEndDelay

<DeposistMoneyCasel 1> endToEndDelay < System_endToEndDelay
CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.deposit_endToEndDelay < System endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<WithdrawMoneyCasel 1> endToEndDelay < System_endToEndDelay
CashierTermina .withdraw_endToEndDelay < System endToEndDelay
DeluxeTransactionServer.withdraw_endToEndDelay < System endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<TransferMoneyCasel 1> endToEndDelay < System endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.transfer_endToEndDelay < System _endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

231

Table H.3 QCDM for CriticalUseCase2

QoS Composition and Decomposition Model for CriticalUseCase2

1. QoS Composition Rules for throughput

System_throughput = CriticalUseCase2_throughput

CriticalUseCase?_throughput = min (DepositMoneyCasel 2 _throughput,
WithdrawMoneyCasel 2_throughput, TransferMoneyCasel 2_throughput)

1/DepositMoneyCasel 2_throughput = 1/CashierTerminal .deposit_throughput +
Umin(DeluxeTransactionServer.deposit_throughput, AccountDatabase.getAccount_throughput,
AccountDatabase.saveAccount_throughput)

1/WithdrawMoneyCasel 2 throughput = 1/CashierTermina QoS.withdraw.throughput +
1/min(DeluxeTransactionServer.withdraw_throughput,
AccountDatabase.getAccount_throughput, AccountDatabase.saveAccount_throughput)

UTransferMoneyCasel 2 throughput = 1/CashierTerminal.transfer_throughput +
1/min(DeluxeTransactionServer.transfer_throughput, AccountDatabase.getAccount_throughput,
AccountDatabase.saveAccount_throughput)

2. QoS Composition Rules for endToEndDelay

SystemQoS.endToEndDelay = CriticalUseCase?2_endToEndDelay

CriticalUseCase?2_endToEndDelay = max (DepositMoneyCasel 2 endToEndDelay,
WithdrawMoneyCasel 2 endToEndDelay, TransferMoneyCasel 2 endToEndDelay)

DepositMoneyCasel 2 endToEndDelay = sum(CashierTerminal .deposit_endToEndDelay,
DeluxeTransactionServer.deposit_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDel ay)

WithdrawMoneyCasel 2 endToEndDelay = sum(CashierTerminal .withdraw_endToEndDelay,
DeluxeTransactionServer.withdraw_endToEndDel ay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

TransferMoneyCasel 2 endToEndDelay = sum(CashierTerminal .transfer_endToEndDelay,
DeluxeTransactionServer.transfer_endToEndDel ay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

(Continued in Table H.4)

Table H.4 QCDM for CriticalUseCase2 (Continued from Table H.3)

232

QoS Composition and Decomposition Model for CriticalUseCase2
(Continued from Table H.3)

3. QoS Decomposition Rules for throughput
CriticalUseCase2_throughput > System_throughput
DepositMoneyCasel_2_throughput > System_throughput
WithdrawMoneyCasel_2_throughput > System_throughput
TransferMoenyCasel_2_throughput > System_throughput

<DepositMoneyCasel 2> throughput > System_throughput
CashierTerminal .deposit_throughput > System_throughput
DeluxeTransactionServer.deposit_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

<WithdrawMoneyCasel 2> throughput > System_throughput
CashierTerminal.withdraw_throughput > System_throughput
DeluxeTransactionServer.withdraw_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

<TransferMoneyCasel 2> throughput > System_throughput
CashierTerminal.transfer_throughput > System_throughput
DeluxeTransactionServer.transfer_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughtput > System_throughput

4. QoS Decomposition Rules for endToEndDelay
CriticalUseCase2_endToEndDelay < System _endToEndDelay
DepositMoneyCasel 2 endToEndDelay < System_endToEndDelay
WithdrawMoneyCasel 2 _endToEndDelay < System endToEndDelay
TransferMoenyCasel 2 endToEndDelay < System_endToEndDelay

<DeposistMoneyCasel 2> endToEndDelay < System_endToEndDelay
CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.deposit_endToEndDelay < System _endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<WithdrawMoneyCasel 2> endToEndDelay < System endToEndDelay
CashierTerminal .withdraw_endToEndDelay < System_endToEndDelay
DeluxeT ransactionServer.withdraw_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<TransferMoneyCasel 2> endToEndDelay < System_endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.transfer_endToEndDelay < System _endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

Table H.5 QCDM for CriticalUseCase3

QoS Composition and Decomposition Model for CriticalUseCase3

1. QoS Composition Rules for throughput

System_throughput = CriticalUseCase3_throughput

CriticalUseCase3_throughput = min (DepositMoneyCase2_throughput,
WithdrawMoneyCase2_throughput, TransferMoneyCase2_throughput)

1/DepositMoneyCase?_throughput = 1/CashierTerminal .deposit_throughput +
1/EconomicServer.deposit_throughput

1/WithdrawMoneyCase?_throughput = 1/CashierTerminal .withdraw_throughput +
1/EconomicServer.withdraw_throughput

1/TransferMoneyCase2_throughput = 1/CashierTerminal.transfer_throughput +
1/EconomicServer.transfer_throughput

2. QoS Composition Rules for endToEndDelay

SystemQoS.endToEndDelay = CriticalUseCase3_endToEndDelay

CriticalUseCase3_endToEndDelay = max (DepositMoneyCase2_endToEndDelay,
WithdrawMoneyCase2_endToEndDelay, TransferMoneyCase2_endToEndDelay)

DepositMoneyCase2_endToEndDelay = sum(CashierTerminal.deposit_endToEndDelay,
EconomicTransactionServer.deposit_endToEndDelay)

WithdrawMoneyCase2_endToEndDelay = sum(CashierTerminal.withdraw_endToEndDel ay,
EconomicTransactionServer.withdraw_endToEndDelay)

TransferMoneyCase?2_endToEndDelay = sum(CashierTerminal.transfer_endToEndDelay,
EconomicTransactionServer.transfer_endToEndDel ay)

3. QoS Decomposition Rules for throughput
CriticalUseCase3_throughput > System_throughput
DepositMoneyCase2_throughput > System_throughput
WithdrawMoneyCase2_throughput > System_throughput
TransferMoenyCase?_throughput > System_throughput

<DepositMoneyCase?2>_throughput > System_throughput
CashierTerminal.deposit_throughput > System_throughput
EconomicTransactionServer.deposit_throughput > System_throughput

<WithdrawMoneyCase2>_throughput > System_throughput
CashierTerminal .withdraw_throughput > System_throughput
EconomicTransactionServer.withdraw_throughput > System_throughput

<TransferMoneyCase2>_throughput > System_throughput
CashierTerminal.transfer_throughput > System_throughput
EconomicTransactionServer.transfer_throughput > System_throughput

(Continued in Table H.6)

233

Table H.6 QCDM for CriticalUseCase3 (Continued from Table H.5)

QoS Composition and Decomposition Model for CriticalUseCase3
(Continued from Table H.5)

4. QoS Decomposition Rules for endToEndDelay
CriticalUseCase3_endToEndDelay < System _endToEndDelay
DepositMoneyCase2_endToEndDelay < System endToEndDelay
WithdrawMoneyCase2_endToEndDelay < System_endToEndDelay
TransferMoenyCase?_endToEndDelay < System_endToEndDelay

<DeposistMoneyCase2>_endToEndDelay < System_endToEndDelay
CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
EconomicTransactionServer.deposit_endToEndDelay < System_endToEndDelay
<WithdrawMoneyCase2>_endToEndDelay < System_endToEndDelay
CashierTermina.withdraw_endToEndDelay < System_endToEndDelay
EconomicTransactionServer.withdraw_endToEndDelay < System endToEndDelay
<TransferMoneyCase2>_endToEndDelay < System_endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay
EconomicTransactionServer.transfer_endToEndDelay < System endToEndDelay

234

235

APPENDIX I: UGDM in XML Format for the Banking Domain Example

This appendix consists of various models of the UGDM in the XML format for the
banking domain example. The models documented in this appendix include Architecture
Model in Digunctive Normal Form (AMDNF) at the component level (Table I.1 and
Table 1.2), Architecture Model in Digunctive Norma Form (AMDNF) at the
function/interface level (Table 1.3, Table 1.4, Table I.5 and Table 1.6), Abstract
Component Interaction Model (Table 1.7), Architecture Model in Disunctive Normal
Form and Ciritical Use Case Model Mapping (Function/Interface Level) (Table 1.8) and
the Mapping of AMDNF from Component Level to Function/Interface Level (Table1.9).

Tablel.1 AMDNF at Component Level inthe XML Format

<?xml version="1.0" encoding="utf-8'?>
<!-- architecture at component level for the banking domain example -->

<architecture_component>

<system _name> Bank </system name>

<case>
<case_name> BankCasel </case_name>
<component> ATM </component>
<component> CashierTerminal </component>
<component> CustomerV alidationServer </component>
<component> CashierValidationServer </component>
<component> TransactionServerManager </component>
<component> EconomicTransactionServer </component>

</case>

<case>
<case_name> BankCase2 </case_name>
<component> ATM </component>
<component> CashierTerminal </component>
<component> CustomerV alidationServer </component>
<component> CashierV alidationServer </component>
<component> TransactionServerManager </component>
<component> DeluxeT ransactionServer </component>
<component> AccountDatabase </component>

</case>

(Continued in Table 1.2)

Tablel.2 AMDNF at Component Level inthe XML Format
(Continued from Table 1.1)

(Continued from Table 1.1)

<case>
<case_name> BankCase3 </case_name>
<component> CashierTerminal </component>
<component> CashierV alidationServer </component>
<component> TransactionServerManager </component>
<component> EconomicT ransactionServer </component>

</case>

<case>
<case_hame> BankCase4 </case_name>
<component> CashierTerminal </component>
<component> CashierV alidationServer </component>
<component> TransactionServerManager </component>
<component> DeluxeT ransactionServer </component>
<component> AccountDatabase </component>

</case>

</architecture_component>

Table 1.3 AMDNF at Function/Interface Level in the XML Format

<?xml version="1.0" encoding="utf-8'?>
<!-- architecture at interface level for the banking domain example -->

<architecture_interface>
<system_name> Bank </system name>
<case>

<case_name> BankCasel </case_name>

<component>
<componentname> ATM </componentname>
<componentsubcase> ATM Casel </componentsubcase>

</component>

<component>
<componentname> CashierTerminal </componentname>
<componentsubcase> Cashier Terminal Casel </componentsubcase>

</component>

<component>
<componentname> CustomerV alidationServer </componentname>
<componentsubcase> CustomerV alidationServerCasel </componentsubcase>

</component>

<component>
<componentname> CashierV alidationServer </componentname>
<componentsubcase> CashierValidationServerCasel </componentsubcase>

</component>

(Continued in Table 1.4)

236

Table 1.4 AMDNF at Function/Interface Level in the XML Format
(Continued from Table 1.3)

237

(Continued from Table 1.3)

<component>
<componentname> TransactionServerManager </componentname>
<componentsubcase> TransactionServerManagerCasel </componentsubcase>
</component>
<component>
<componentname> EconomicTransactionServer </componentname>
<componentsubcase> EconomicTransactionServerCasel </componentsubcase>
</component>
</case>
<case>
<case_hame> BankCase2 1 </case_name>
<component>
<componentname> ATM </componentname>
<componentsubcase> ATM Casel </componentsubcase>
</component>
<component>
<componentname> CashierTerminal </componentname>
<componentsubcase> Cashier Terminal Casel </componentsubcase>
</component>
<component>
<componentname> CustomerV alidationServer </componentname>
<componentsubcase> CustomerV alidationServerCasel </componentsubcase>
</component>
<component>
<componentname> CashierV alidationServer </componentname>
<componentsubcase> CashierValidationServerCasel </componentsubcase>
</component>
<component>
<componentname> TransactionServerManager </componentname>
<componentsubcase> TransactionServerManagerCasel </componentsubcase>
</component>
<component>
<componentname> DeluxeT ransactionServer </componentname>
<componentsubcase> DeluxeT ransactionServerCasel </componentsubcase>
</component>
<component>
<componentname> AccountDatabase </componentname>
<componentsubcase> AccountDatabaseCasel </componentsubcase>
</component>
</case>
<case>
<case_name> BankCase2_2 </case_name>
<component>
<componentname> ATM </componenthame>
<componentsubcase> ATM Casel </componentsubcase>
</component>

(Continued in Table 1.5)

Table!.5 AMDNEF at Function/Interface Level in the XML Format
(Continued from Table 1.4)

(Continued from Table 1.4)

<component>
<componentname> CashierTerminal </componentname>
<componentsubcase> Cashier Terminal Casel </componentsubcase>
</component>
<component>
<componentname> CustomerV alidationServer </componentname>
<componentsubcase> CustomerV alidationServerCasel </componentsubcase>
</component>
<component>
<componentname> CashierV alidationServer </componentname>
<componentsubcase> CashierV alidationServerCasel </componentsubcase>
</component>
<component>
<componentname> TransactionServerManager </componentname>
<componentsubcase> TransactionServerManagerCasel </componentsubcase>
</component>
<component>
<componentname> DeluxeT ransactionServer </componentname>
<componentsubcase> DeluxeT ransactionServerCase? </componentsubcase>
</component>
<component>
<componentname> AccountDatabase </componentname>
<componentsubcase> AccountDatabaseCase2 </componentsubcase>
</component>
</case>
<case>
<case_name> BankCase3 </case_name>
<component>
<componentname> CashierTerminal </componentname>
<componentsubcase> Cashier Terminal Casel </componentsubcase>
</component>
<component>
<componentname> CashierValidationServer </componentname>
<componentsubcase> CashierV alidationServerCasel </componentsubcase>
</component>
<component>
<componentname> TransactionServerManager </componentname>
<componentsubcase> TransactionServerManager Casel </componentsubcase>
</component>
<component>
<componentname> EconomicTransactionServer </componentname>
<componentsubcase> EconomicTransactionServerCasel </componentsubcase>
</component>
</case>

(Continued in Table 1.6)

238

Table!.6 AMDNEF at Function/Interface Level in the XML Format
(Continued from Table 1.5)

(Continued from Table 1.5)

<case>
<case_name> BankCased 1 </case_name>
<component>
<componentname> CashierTerminal </componentname>
<componentsubcase> CashierTerminal Casel </componentsubcase>
</component>
<component>
<componentname> CashierV alidationServer </componentname>
<componentsubcase> CashierV alidationServerCasel </componentsubcase>
</component>
<component>
<componentname> TransactionServerManager </componentname>
<componentsubcase> TransactionServerManagerCasel </componentsubcase>
</component>
<component>
<componentname> DeluxeT ransactionServer </componentname>
<componentsubcase> DeluxeT ransactionServerCasel </componentsubcase>
</component>
<component>
<componentname> AccountDatabase </componentname>
<componentsubcase> AccountDatabaseCasel </componentsubcase>
</component>
</case>
<case>
<case_name> BankCased 2 </case_name>
<component>
<componentname> CashierTerminal </componentname>
<componentsubcase> CashierTerminal Casel </componentsubcase>
</component>
<component>
<componentname> CashierV alidationServer </componentname>
<componentsubcase> CashierV alidationServerCasel </componentsubcase>
</component>
<component>
<componentname> TransactionServerManager </componentname>
<componentsubcase> TransactionServerManagerCasel </componentsubcase>
</component>
<component>
<componentname> DeluxeT ransactionServer </componentname>
<componentsubcase> DeluxeT ransactionServerCase2 </componentsubcase>
</component>
<component>
<componentname> AccountDatabase </componentname>
<componentsubcase> AccountDatabaseCase2 </componentsubcase>
</component>
</case>
</architecture interface>

239

Table 1.7 Abstract Component Interaction Model in the XML Format

<?xml version="1.0" encoding="utf-8'?>
<!-- component interaction model for the banking domain example -->

<component_interaction>
<system_name> Bank </system name>
<interaction>
<initiator> CashierTerminal </initiator>
<responder> CashierValidationServer </responder>
</interaction>
<interaction>
<initiator> ATM </initiator>
<responder> CustomerValiationServer </responder>
</interaction>
<interaction>
<initiator> CashierTerminal </initiator>
<responder> TransactionServerManager </responder>
</interaction>
<interaction>
<initiator> CashierTerminal </initiator>
<responder> EconomicTransactionServer </responder>
</interaction>
<interaction>
<initiator> CashierTerminal </initiator>
<responder> DeluxeTransactionServer </responder>
</interaction>
<interaction>
<initiator> ATM </initiator>
<responder>TransactionServerManager </responder>
</interaction>
<interaction>
<initiator> ATM </initiator>
<responder> EconomicTransactionServer </responder>
</interaction>
<interaction>
<initiator> ATM </initiator>
<responder> DeluxeTransactionServer </responder>
</interaction>
<interaction>
<initiator> DeluxeTransactionServer </initiator>
<responder> AccountDatabase </responder>
</interaction>
</component_interaction>

240

241

Table 1.8 Architecture Model and Critical Use Case Model Mapping
(Function/Interface Level) in the XML format

<?xml version="1.0" encoding="utf-8'?>

<!-- mapping from architecture interface leve to critical use case model for the banking
domain example -->

<map_architecture_cucm>
<system_name> Bank </system_name>
<map>
<casenamefrom> BankCasel </casenamefrom>
<casenameto> Critical UseCaseM odel 3 </casenameto>
</map>
<map>
<casenamefrom> BankCase2 1 </casenamefrom>
<casenameto> Critical UseCaseM odel 1 </casenameto>
</map>
<map>
<casenamefrom> BankCase2_2 </casenamefrom>
<casenameto> Critical UseCaseM odel 2 </casenameto>
</map>
<map>
<casenamefrom> BankCase3 </casenamefrom>
<casenameto> Critical UseCaseM odel 3 </casenameto>
</map>
<map>
<casenamefrom> BankCase4 1 </casenamefrom>
<casenameto> Critical UseCaseM odel 1 </casenameto>
</map>
<map>
<casenamefrom> BankCase4 2 </casenamefrom>
<casenameto> Critical UseCaseM odel 2 </casenameto>
</map>
</map_architecture_cucm>

Table 1.9 Mapping of AMDNF from Component Level to
Function/Interface Level in the XML Format

<?xml version="1.0" encoding="utf-8'?>

<!-- Mapping from architecture at component level to architecture at interface level for the
banking domain example -->

<map_architecture>
<system_name> Bank </system name>
<map>
<casenamefrom> BankCasel </casenamefrom>
<casenameto> BankCasel </casenameto>
</map>
<map>
<casenamefrom> BankCase2 </casenamefrom>
<casenameto> BankCase2_1 </casenameto>
</map>
<map>
<casenamefrom> BankCase3 </casenamefrom>
<casenameto> BankCase3 </casenameto>
</map>
<map>
<casenamefrom> BankCase4 </casenamefrom>
<casenameto> BankCased 1 </casenameto>
</map>
</map_architecture>

242

243

APPENDIX J. UGDM Example: Banking Domain Example

This appendix consists of a complete UGDM for the banking domain example devel oped
in Chapter 5.

UGDM Example: Banking Domain Example

1. Generd Information

1.1 Domain Name: /Finance/Banking

1.2 System Family Name: Bank

1.3 Version: v1.0

1.4 Date: 10/1/2002

1.5 Author: Zhisheng Huang, UniFrame Research Group

1.6 Description: This system family in the banking domain provides basic account transaction service.

2. Problem Space
2.1 Use Case Modd
e Commonality and Variation
Bank: al (ManageCustomers, ManageA ccounts, Login-exitAccount, ValidateUsers)
ManageCustomers: all (OpenAccount, CloseAccount)
ManageAccounts: al (ManageAccounts Cashier, ManageAccounts Customer?)
ManageAccounts Cashier: al (WithdrawMoney Cashier, DepositMoney_Cashier,
TransferMoney_Cashier, CheckBalance Cashier)
ManageAccounts Customer: all (WithdrawMoney Customer, DepositMoney Customer,
TransferMoney_Customer, CheckBalance Customer)
ValidateUsers: al (ValidateUsers Cashier, ValidateUsers Customer?)
Login-exitAccount: all (Login-exitAccount_Cashier, Login-exitAccount_Customer?)
e Constraint Expression
0 Default Constraint
default (ManageA ccounts: ManageAccounts_Cashier)
default (ValidateUsers: ValidateUsers Cashier)
default (Login-exitAccount: Login-exitAccount_Cashier)
0 Satisfaction Constraint
mutual_require (ValidateUsers Customer, ManageAccounts_Customer, Login-
exitAccount_Customer)

2.2 QoS Requirement Model
System.QoS: al (System.QoS.throughput, System.QoS.endToEndDel ay)
System.QoS.throughput: Critical UseCaseM odel.QoS.thoughput
SystemQoS.endToEndDelay: CriticalUseCaseM odel.QoS.endToEndDelay

2.3 Architecture Model in Hierarchical Form
e Commonality and Variation
Bank: al (UserSubsystem, UserV alidationSubsystem, TransactionSubsystem)
UserSubsystem: all (ATM?, CashierTerminal)
UserValidationSubsystem: al (CustomerValidationServer?, CashierValidationServer)
TransactionSubsystem: all (TransactionServerManager, one-of (EconomicTransactionSubsystem,
DeluxeT ransactionSubsystem))
EconomicTransactionSubsystem: EconomicTransactionServer

244

DeluxeTransactionSubsystem: all (DeluxeTransactionServer, AccountDatabase)
Constraint Expression
0 Default Constraint
default (UserSubsystem: CashierTerminal)
default (UserValidationSubsystem: CashierValidationServer)
default (TransactionSubsystem: all (TransactionServerManager,
EconomicTransactionSubsystem)
0 Satisfaction Constraint
mutual_require (ATM, CustomerV aliationServer)

2.4 System-Level Multiplicity Model

multiplicity ((Bank, CashierTerminal): 1..*)
multiplicity ((Bank, ATM) : 0..*%)

multiplicity ((Bank, CashierValidationServer) : 1)
multiplicity ((Bank, CustomerValidationServer) : 0..1)
multiplicity ((Bank, TransactionServerManager) : 1)
multiplicity ((Bank, EconomicTransactionServer) : 0..2)
multiplicity ((Bank, DeluxeTransactionServer) : 0..2)
multiplicity ((Bank, AccountDatabase) : 0..2)

3. Solution Space and Configuration Knowledge
3.1 Architecture Related Models
3.1.1 Architecture Model in Digjunctive Normal Form (Abstract Component Level)

Digunctive Normal Form
Bank: one-of (BankCasel, BankCase2, BankCase3, BankCase4)

BankCasel: al (ATM, CashierTerminal, CustomerValidationServer, CashierValidationServer,
TransactionServerManager, EconomicTransactionServer)

BankCase2: adl (ATM, CashierTerminal, CustomerValidationServer, CashierValidationServer,
TransactionServerManager, DeluxeTransactionServer, AccountDatabase)

BankCase3: al (CashierTerminal, CashierValidationServer, TransactionServerManager,
EconomicTransactionServer)

BankCase4: al (CashierTerminal, CashierValidationServer, TransactionServerManager,
DeluxeTransactionServer, AccountDatabase)

Constraint Expression

0 Default Constraint
Default (Bank: BankCase3)

3.1.2 Architecture Model in Disjunctive Normal Form (Function/Interface Level)

Digjunctive Normal Form

Bank: one-of (BankCasel, BankCase2, BankCase3, BankCase4)
BankCasel: one-of (BankCasel 1)

BankCase2: one-of (BankCase2 1, BankCase2 2)

BankCase3: one-of (BankCase3 1)

BankCase4: one-of (BankCase4 1, BankCased 2)

BankCasel 1: all (ATMCasel, CashierTerminal Casel, CustomerV alidationServerCasel,
CashierValidationServerCasel, TransactionServerManagerCasel,
EconomicTransactionServerCasel)

BankCase2 1. all (ATMCasel, CashierTerminal Casel, CustomerV alidationServerCasel,
CashierValidationServerCasel, TransactionServerManagerCasel,
DeluxeTransactionServerCasel, AccountDatabaseCasel)

BankCase2 2: all (ATMCasel, CashierTerminal Casel, CustomerV alidationServerCasel,
CashierValidationServerCasel, TransactionServerManagerCasel,

245

DeluxeTransactionServerCase2, AccountDatabaseCase?)
BankCase3 1: all (CashierTerminalCasel, CashierValidationServerCasel,
TransactionServerManagerCasel, EconomicTransactionServerCasel)
BankCase4 1. all (CashierTerminalCasel, CashierValidationServerCasel,
TransactionServerManager Casel, DeluxeT ransactionServerCasel, AccountDatabaseCasel)
BankCase4 2: all (CashierTerminalCasel, CashierValidationServerCasel,
TransactionServerManager Casel, DeluxeT ransactionServerCase2, AccountDatabaseCase?)
e Constraint Expression
0 Default Constraint
default (BankCase2: BankCase? 1)
default (BankCase4: BankCased 1)

3.1.3 Architecture Model Mapping
map (BankCasel: BankCasel 1)
map (BankCase2: BankCase2 1)
map (BankCase3: BankCase3 1)
map (BankCase4: BankCase4 1)

3.1.4 Abstract Component I nteraction Model
interact (CashierTerminal, CashierValidationServer)
interact (ATM, CustomerV aliationServer)
interact (CashierTerminal, TransactionServerManager)
interact (CashierTerminal, EconomicTransactionServer)
interact (CashierTerminal, DeluxeT ransactionServer)
interact (ATM, TransactionServerManager)
interact (ATM, EconomicTransactionServer)
interact (ATM, DeluxeTransactionServer)
interact (DeluxeTransactionServer, AccountDatabase)

3.1.5 Component-level Multiplicity Model
multiplicity ((CashierValidationServer, CashierTerminal) : 1..*)
multiplicity ((CustomerValiationServer, ATM) : 1..%)
multiplicity ((TransactionServerManager, CashierTerminal) : 1..%)
multiplicity ((EconomicTransactionServer, CashierTerminal) : 1..*)
multiplicity ((DeluxeTransactionServer, CashierTerminal) : 1..*)
multiplicity ((TransactionServerManager, ATM) : 1..*)
multiplicity ((EconomicTransactionServer, ATM) : 1..*%)
multiplicity ((DeluxeTransactionServer, ATM) : 1..%)
multiplicity ((DeluxeTransactionServer, AccountDatabase) : 1)

3.2 Design Feature Related Models
3.2.1 Interface Model
Interface: | AccountDatabase
1. Syntax
Account getAccount(String accountNumber, int accountType);
Pre: NONE
Post: NONE
Invariant: NONE
Communication Pattern: cp2s or cp2a
Description: This function returns an account object asidentified by the parameters. It returns
null if the account specified does not exist.
void saveAccount(Account account);
Pre: NONE
Post: NONE

246

Invariant: NONE
Communication Pattern: cp2s or cp2a

Description: This function updates the account if it aready exists; otherwise it adds an entry in

the database for this new account.
void removeAccount(Account account, int accountType);
Pre: NONE
Post: NONE
Invariant: NONE
Communication Pattern: cp2s or cp2a
Description: This function removes the specified account if it exists; otherwise it does
nothing.
2. Variation
| AccountDatabase: one-of (I AccountDatabaseCasel, 1 AccountDatabaseCase?)
| AccountDatabaseCasel: { cp2s}
| AccountDatabaseCase?: { cp2a}
3. Default
default (1 AccountDatabase: 1AccountDatabaseCasel)

Interface: 1 AccountManagement
Interface: 1Customer Management
Interface: 1 TransactionServer Manager

Interface: |Validation

3.2.2 Abstract Component I nterface Model

Digjunctive Normal Form

CashierTerminal: CashierTerminal Casel

ATM: ATMCasel

CashierValidationServer: CashierValidationServerCasel

CustomerV alidationServer: CustomerV alidationServerCasel

TransactionServerManager: TransactionServerManager Casel

EconomicTransactionServer: EconomicT ransactionServerCasel

DeluxeTransactionServer: one-of (DeluxeT ransaxtionServerCasel,
DeluxeTransactionServerCase?)

AccountDatabase: one-of (AccountDatabaseCasel, AccountDatabaseCase?)

interface (CashierTerminal Casel: provided interface (ICustomerManagementCasel,
| AccountM anagementCasel), required_interface (ICustomerManagementCasel,
| AccountM anagementCasel, | TransactionServerManagerCasel, 1V alidationCasel))

interface (ATMCasel: provided_interface (IAccountManagementCasel), required_interface
(IAccountM anagementCasel, | TransactionServerManagerCasel, |ValidationCasel))

interface (CashierValidationServerCasel: provided interface (IValidationCasel),
required_interface (NONE))

interface (CustomerValidationServerCasel: provided interface (IValidationCasel),
required_interface (NONE))

interface (TransactionServerManagerCasel: provided_interface
(ITransactionServerM anagerCasel), required_interface (NONE))

interface (EconomicT ransactionServerCasel: provided interface (I AccountManagementCasel,
| CustomerManagementCasel), required_inteface (NONE))

interface (DeluxeTransaxtionServerCasel: provided interface (IAccountManagementCasel,
| CustomerManagementCasel), required interface (| AccountDatabaseCasel))

247

interface (DeluxeTransactionServerCase?: provided_interface (1AccountManagementCasel,
| CustomerManagementCasel), required_interface (1 AccountDatabaseCase?))

interface (AccountDatabaseCasel: provided interface (I AccountDatabaseCasel),
required_interface (NONE))

interface (AccountDatabaseCase2: provided interface (IAccountDatabaseCase2),
required_interface (NONE))

e Constraint Expression

o Default Constraint
default (DeluxeTransactionServer : DeluxeT ransactionServerCasel)
default (AccountDatabase : AccountDatabaseCasel)

0 Satisfaction Constraint
mutual_require (DeluxeTransactionServerCasel, AccountDatabaseCasel)
mutual_require (DeluxeTransactionServerCase?, AccountDatabaseCase?)

3.2.3 Abstract Component Model
Abstract Component: AccountDatabaseCasel
1. Component Name: AccountDatabase
2. Component Subcase: AccountDatabaseCasel
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide an account database service.
6. Computational Attributes:
6.1 Inherent Attributes:
6.1.1id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A
6.2 Functiona Attributes:
6.2.1 Function description: Serve as an account database.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract
6.2.4.1 Provided Interface: | AccountDatabaseCasel
6.2.4.2 Required Interface: NONE
6.2.5 Technology: N/A
6.2.6 Expected Resources. N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE
7. Cooperation Attributes
7.1 Preprocessing Collaborators: DeluxeT ransactionServerCasel
7.2 Postprocessing Collaborators: NONE
8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: LO
8.3 Fault tolerance: LO
9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A

248

9.4 Quality Level: N/A
Abstract Component: DeluxeTransactionServer
Abstract é;)mponent: EconomicTransactionServer
Abstract é;)mponent: TransactionServer Manager
Abstract é;)mponent: CashierTerminal
Abstract .C.Z;)mponent: ATM
Abstract .C.Z;)mponent: CashierValidationServer

Abstract Component: CustomerValidationServer

3.3 QoS-related Models
3.3.1 Critical Use Case Model (Function/Interface Level)

Digjunctive Normal Form
CriticalUseCaseModel: one-of (CriticalUseCaseModel 1, Critical UseCaseM odel 2,
CriticalUseCaseM odel 3)

CriticalUseCaseModel 1: all (DepositMoneyCasel 1, WithdrawMoneyCasel 1,
TransferMoneyCasel 1)

CriticalUseCaseModel 2: all (DepositMoneyCasel 2, WithdrawMoneyCasel 2,
TransferMoneyCasel 2)

CriticalUseCaseModel 3: all (DepositMoneyCase2, WithdrawMoneyCase2, TransferMoneyCase2)

DepositMoneyCasel 1: path_f(CashierTerminal .deposit[cp2s],
DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

DepositMoneyCasel_2: path_f (CashierTerminal.deposit[cp2g],
DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

DepositMoneyCase2: path_f (CashierTerminal .deposit[cp29],
EconomicTransactionServer.deposit[cp2s])

WithdrawMoneyCasel 1: path_f (CashierTerminal.withdraw[cp2g],
DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp2g],
AccountDatabase.saveAccount[cp2s])

WithdrawMoneyCasel 2: path_f (CashierTerminal.withdraw[cp2s],
DeluxeTransactionServer.withdraw|cp2s], AccountDatabase.getAccount[cp24],
AccountDatabase.saveAccount[cp2a))

WithdrawM oneyCase?: path_f (CashierTerminal .transfer[cp29],
EconomicTransactionServer.transfer[cp2s])

TransferMoneyCasel 1: path_f (CashierTerminal.transfer[cp2g],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2g],
AccountDatabase.saveAccount[cp2s])

TransferMoneyCasel 2: path_f (CashierTerminal.transfer[cp2g],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a))

TransferMoneyCase2: path _f (CashierTerminal .transfer[cp2g],
EconomicTransactionServer.transfer[cp2s])

249

Constraint Expression

(0]

Default Constraint
default (CriticalUseCase: Critical UseCase3)

3.3.2 Architecture Model and Critical Use Case Model Mapping (Function/Interface Level)
map (BankCasel 1: Critical UseCaseModel3)
map (BankCase2_1: CriticalUseCaseModel 1)
map (BankCase2_2: Critical UseCaseModel 2)
map (BankCase3 1: Critical UseCaseM odel 3)
map (BankCase4 1: CriticalUseCaseModel 1)
map (BankCase4 2: Critical UseCaseModel 2)

3.3.3 QoS Composition and Decomposition Model (QCDM)
QCDM: one-of (Critical UseCaseModel 1, CriticalUseCaseM odel 2, Critical UseCaseM odel 3)
CriticalUseCaseModel 1

1) QoS Composition Model

1.1) QoS Composition Rules for throughput

System_throughput = CriticalUseCaseModel 1_throughput

CriticalUseCaseModel 1_throughput = min (DepositMoneyCasel 1 throughput,
WithdrawMoneyCasel 1 throughput, TransferMoneyCasel 1 throughput)

1/DepositMoneyCasel 1 throughput = 1/CashierTerminal .deposit_throughput +
1/DeluxeT ransactionServer.deposit_throughput +
1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveA ccount_throughput

L/WithdrawMoneyCasel 1 throughput = 1/CashierTerminal .withdraw_throughput +
1/DeluxeT ransactionServer.withdraw_throughput +
1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveA ccount_throughput

UTransferMoneyCasel 1 throughput = 1/CashierTerminal.transfer_throughput +
1/DeluxeTransactionServer.transfer_throughput +
1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveA ccount_throughput

1.2) QoS Composition Rules for endToEndDelay

SystemQoS.endToEndDelay = CriticalUseCaseModel1_endToEndDelay

CriticalUseCaseModel1_endToEndDelay = max (DepositMoneyCasel 1 endToEndDelay,
WithdrawMoneyCasel 1 endToEndDelay, TransferMoneyCasel 1 endToEndDelay)

DepositMoneyCasel 1 _endToEndDelay = sum(CashierTerminal .deposit_endToEndDelay,
DeluxeTransactionServer.deposit_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

WithdrawMoneyCasel 1 endToEndDelay =
sum(CashierTerminal.withdraw_endToEndDelay,
DeluxeT ransactionServer.withdraw_endToEndDel ay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDel ay)

TransferMoneyCasel 1 endToEndDelay = sum(CashierTerminal .transfer_endToEndDelay,
DeluxeTransactionServer.transfer_endToEndDel ay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

2) QoS Decomposition Model

2.1) QoS Decomposition Rules for throughput
CashierTerminal.deposit_throughput > System_throughput
CashierTerminal .withdraw_throughput > System_throughput
CashierTerminal.transfer_throughput > System throughput

250

DeluxeTransactionServer.deposit_throughput > System_throughput
DeluxeTransactionServer.withdraw_throughput > System_throughput
DeluxeTransactionServer.transfer_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

2.2) QoS Decomposition Rules for endToEndDelay
CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
CashierTerminal.withdraw_endToEndDelay < System endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.deposit_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.withdraw_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.transfer_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

CriticalUseCaseModel 2

CriticalUseCaseModel 3

APPENDIX K: Acronyms

ACIM: Abstract Component Interface Model
ACM: Abstract Component Model

AMDNF: Architecture Model in Digunctive Normal Form
AMHF: Architecture Model in Hierarchical Form
AMNF: Architecture Model in Normalized Form
AMM: Architecture Model Mapping

BNF: Backus-Naur Form

CBSD: Component-based Software Devel opment
CONT: Commercia Off-the-Net

COTS: Commercia Off-the-Shelf

CUCM: Critical Use Case Model

DCS: Distributed Computing Systems

DFIM: Design Feature Interaction Model

DSL: Domain Specific Language

IM: Interface Model

MDA: Model Driven Architecture

MM: Multiplicity Model

MMSL: System-Level Multiplicity Model
MMCL: Component-level Multiplicity Model
PDM: Platform Dependent Model

PIM: Platform Independent Model

PLP: Product Line Practice

QoS: Quality of Service

QRM: QoS Requirement Model

UA: UniFrame Approach

UCM: Use Case Model

UDSL: UniFrame Domain Specific Language
UGDM: UniFrame Generative Domain Model
UGDP: UniFrame UGDM Development Process
UQOS: UniFrame QoS Framework

URDS: UniFrame Resource Discovery Service
USGI: UniFrame System Generation Infrastructure

USGPF: UniFrame System-Level Generative Programming Framework

251

251

LIST OF REFERENCES

252

LIST OF REFERENCES

[AAGOL] J. @. Aagedal. Quality of Service Support in Development of Distributed
Systems. PhD thesis, Department of Informatics, Faculty of Mathematics and Natura
Sciences, University of Oslo, 2001.

[APAQ3] Apache. Xerces Java Parser Readme. http://xml.apache.org/xerces-j/, 2003.

[APAO3a] Apache Jakarta Project. Apache Tomcast. http://jakarta.apache.org/tomcat/,
2003.

[AUGY95] M. Auguston. Program Behavior Model Based on Event Grammar and its
Application for Debugging Automation. In Proceedings of the 2nd Inernational
Workshop on Automated and Algorithmic Debugging, pages 277-291, 1995.

[AUGY97] M. Auguston, A. Gates, M. Lujan. Defining a Program Behavior Model for
Dynamic Anayzers. In Proceedings of the 9th International Conference on Software
Engineering and Knowledge Engineering, SEKE’ 97, pages 257-262, 1997.

[BAT92] D. Batory, S. O'Madley. The Design and Implementation of Hierarchical
Software Systems with Reusable Components. ACM Transactions on Software
Engineering and Methodol ogy, October 1992.

[BAT95] D. Batory, L. Coglianese, M. Goodwin, S. Shafer. Creating Reference
Architectures: An Example from Avionics. Symposium on Software Reusability 1995,
Sedttle, Washington.

[BAT96] D. Batory. Subjectivity and GenVoca Generators. 1996 International
Conference on Software Resuse, Orlando, Florida

[BATOZ2] D. Batory, R. Lopez-Herrgion, J. Martin. Generating Product-Lines of Product-
Families. 2002 Automated Software Engineering Conference, Edinburgh, Scotland, pp
81-92.

[BAY 03] Bayfront Technologies, Inc. http://www.bayfronttechnol ogies.com, 2003.

[BOO98] G. Booch, I. Jacobson, J. Rumbaugh, J. Rumbaugh. The Unified Modeling
Language User Guide. Addison-Wesley, 1998. ISBN: 0201571684.

253

[BRAO1] G. Brahnmath, R. Raje, A. Olson, C. Sun. Quality of Service Catalog for
Software Components. Technical Report (TR-CIS-0219-01), Department of Computer
and Information Science, Indiana University Purdue University Indianapolis, 2001.

[BRAO2] G. Brahnmath. The UniFrame Quality of Service Framework. MS Thesis,
Department of Computer & Information Science, Indiana University Purdue University
Indianapolis, December 2002.

[BRAO24] G. Brahnmath, R. Ragje, A. Olson, B. Bryant, M. Auguston, C. Burt. A Quality
of Service Catalog for Software Components. The Proceedings of the Southeastern
Softwar e Engineering Conference, Huntsville, Alabama, April 2002, pages 513-520.

[BRYO0O] B. Bryant. Object-Oriented Natural Language Requirements Specification. In
Proceedings of ACSC 2000, the 23rd Australasian Computer Science Conference,
January 30-February 4, 2000, Canberra, Australia, January 2000, pages 24-30.

[BRYO02] B. Bryant, B. Lee. Two-Level Grammar as an Object-Oriented Requirements
Specification Language, Proceedings (CR-ROM) of 35th Hawaii International
Conference on System Sciences, 2002, page 10.
http://www.hicss.hawaii.edu/HICSS 35/HICSSpapers/PDFdocuments/STDSL OL1.pdf.

[BRY024] B. Bryant, C. Burt, M. Auguston, R. Raje, A. Olson. Formal Specification of
Generative Component Assembly Using Two-Level Grammar. Proceedings of SEKE
2002, Fourteenth International Conference on Software Engineering and Knowledge
Engineering, July 15-19, 2002, Sant'/Angelo d'Ischia, Italy

[BUS96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture. A System of Patterns. John Wiley & Sons Ltd,
Chichester, UK, 1996.

[CAOQ02] F. Cao, B. Bryant, R. Rge, M. Auguston, A. Olson, C. Burt. Component
Specification and Wrapper/Glue Code Generation with Two-Level Grammar using
Domain Specific Knowledge. Proceedings of ICFEM 2002, 4th International Conference
on Formal Engineering Methods, Shanghai, China, October 2002. Springer-Verlag
Lecture Notes in Computer Science, Vol. 2495, 2002, pp. 103-107.

[CAOQ3] F. Cao, Z. Huang, B. Bryant, R. Raje, A. Olson, M. Auguston, C. Burt. To be
appear on the Proceedings of the 2003 International Conference on Software
Engineering Research and Practice. SERP03: June 23-26, 2003, Las Vegas, Nevada,
USA.

[CLESS] J. C. Cleaveland. Building application generators. |EEE Software, pages 25-33,
July 1988.

254

[CLEQ1] P. Clements, P. Donohoe, K. Kang, L. Northrop. Fifth Product Line Practice
Workshop Report. September, 2001.
http://www.sei.cmu.edu/publications/documents/01.reports/01tr027.html.

[COH99] S. Cohen. From Product Line Architectures to Products. Position paper for the
ECOOP'99 Workshop on Object-Technology for Product-Line Architectures, Lisbon,
Portugal, June 1999. http://www.esi.es/Proj ects/Reuse/Prai se/pdf/ses2- 1.pdf.

[COHOQ] S. Cohen, B. Gallagher, M. Fisher, L. Jones, R. Krut, L. Northrop, W. O’ Brien,
D. Smith, A. Soule. Third DoD Product Line Practice Workshop Report. July 2000.
http://www.sei.cmu.edu/publications/documents/00.reports/00tr024.html.

[CZA99] K. Czarnecki, U.W. Eisenecker. Components and Generative Programming.
Proceedings of the Joint European Software Engineering Conference and ACM
SGSOFT International Symposium on the Foundations of Software Engineering
(ESEC/FSE 99, Toulouse, Frankreich, September 1999). Springer-Verlag,
1999.http://www-ia.tu-ilmenau.de/~czarn/esec99/esec99.pdf.

[CZA99a] K. Czarnecki. DEMRAL: Domain Engineering Method for Developing
Reusable Algorithmic. http://www-ia.tu-ilmenau.de/~czarn/. 1999.

[CZAOQ] K. Czarnecki, U.W. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

[GAM95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns Elements of
Reusable Object-Orientated Software. Addison-Wesley, 1995.

[GME] Generic Modeling Environment. Institute for Software Integrated Systems.
Vanderbilt University. http://www.isis.vanderbilt.edu/Projects/gme/default.html.

[HUAO2] Z. Huang, R. Raje, A. Olson, B. Bryant, M. Auguston, C. Burt, C. Sun. Unified
Approach for System-Level Generative Programming. Proceedings of the IEEE Fifth
International Conference on Algorithms and Architectures for Parallel Processing,
Belijing, China, October 2002, pp. 136-142.

[IBMO2] IBM. IBM WebSphere V4.0 Advanced Edition Handbook. Chapter 17, March
2002. http://www.redbooks.ibm.com/redpi eces/pdfs/sg246176.pdf.

[ISO86] Quality Vocabulary. International Organization for Standardization, Geneva.
SO 8402: 1986, page 8.

[KAN9Q] K. Kang, S. Cohen, J. Hess, W. Nowak, S. Peterson. Feature-Oriented Domain
Anaysis (FODA) Feasibility Study. Technica Report, CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, November
1990.

255

[LEEOZ2] B. Lee, B. Bryant. Automated Conversion from Requirements Documentation
to an Object-Oriented Formal Specification Language. Proceedings of SAC 2002, the
2002 ACM Symposium on Applied Computing, March 11-14, 2002, Madrid, Spain, 2002,
pp. 932-936.

[LEEO2a] B. Lee, B. Bryant. Automation of Software System Development Using
Natural Language Processing and Two-Level Grammar. Proceedings of the 2002
Monterey Workshop on Radical Innovations Software and Systems Engineering in the
Future, Venice, Italy, October 2002.

[LUQO1] Luqi, V. Berzins, J. Ge, M. Shing, M. Auguston, B. Bryant, B. Kin. DCAPS -
Architecture for Distributed Computer Aided Prototyping System. In Proceedings of the
12th IEEE International Workshop on Rapid System prototyping, pp.103-109, June 25-
27, 2001, Monterey Beach Resort, California, USA, IEEE Computer Society Press, 2001.

[MAY02] S. Mayo. Web Services: How Will Professional Services Firms Compete for
This Multibillion-Dollar Opportunity. IDC, March 2002.

[MS98] Microsoft Corporation. DCOM Specifications.
URL.: -http://www.microsoft.com/oledev/olecom, 1998.

[NEI80] J. Neighbors. Software Construction Using Components. PhD Thesis. University
of Californiaat Irvine, 1980, UCI ICS technical report TR-160.

[NEIO3] J. Neighbors. Draco 1.2 Users Manual.
http://www.bayfronttechnol ogies.com/manual .htm, 2003.

[NETO3] .NET, Microsoft Corporation. http://www.microsoft.com/net/, 2003.

[OMG99] Object Management Group. CORBA Components. Technical report, Object
Management Group TC Document orbos/99-02-05, March 1999.
http://www.omg.org/cgi-bin/doc?orbos/99-02-05.

[OMGO01] Object Management Group (OMG). Model Driven Architecture: A Technical
Perspective. Technica Report, OMG Document No. ab/2001-02-01/04, February 2001.
ftp://ftp.omg.org/pub/docs/ab/01-02-04.pdf .

[OMGO3] Object Management Group (OMG). UML Notation Guide. formal/03-03-10
(UMI 1.5 chapter 3 - UML Notation Guide). http://www.omg.org/cgi-bin/doc?formal/03-
03-10, 2003.

[ORAOQ3] Oracle. http://www.oracle.com, 2003.

256

[ORF98] R. Orfali, D. Harkey. Client/Server Programming with JAVA and CORBA. The
second edition. John Wiley & Sons, Inc., 1998.

[RAJOO] R. Rage. UMM: Unified Meta-object Model. Proceedings of 4th IEEE
International Conference on Algorithms and Architecture for Parallel Processing,
|CA3PP'2000, pp: 454-465, Hong Kong, 2000.

[RAJO1] R. Rae, B. Bryant, M. Auguston, A. Olson, C. Burt. A Unified Approach for
the Integration of Distributed Heterogeneous Software Components. Proceedings of the
2001 Monterey Workshop on Engineering Automation for Software Intensive System
Integration, Monterey, California, 2001, pp: 109-119.

[RAJO2] R. Ragje, B. Bryant, A. Olson, M. Auguston, C. Burt. A quality-of-service-based
framework for creating distributed heterogeneous software components. Concurrency
and Computation: Practice and Experience, Volume 14, Issue 12, 2002. Pages. 1009-
1034.

[SEI96] J. Seigel. CORBA Fundamentals and Programming. John Wiley & Sons, Inc.,
1996.

[SEI02] Software Engineering Institute, Carnegie Mellon University. The Product Line
Approach Initiative. http://www.sal.cmu.edu/plp/plp_init.ntml, 2002.

[SEI02a] Software Engineering Institute, Carnegie Mellon University. A Framework for
Software Product Line Practice-Version 3.0.
http://www.sei.cmu.edu/pl p/framework.html, 2002.

[SEIO2b] Software Engineering Institute, Carnegie Mellon Univeristy. Organization
Domain Modeling. http://www.sei.cmu.edu/str/descriptions/odm.html, 2002.

[SEIO3] Software Engineering Institute, Carnegie Mellon University. Feature-Oriented
Domain Analysis. http://www.sel .cmu.edu/domai n-engineering/FODA .html, 2003.

[SHA96] M. Shaw, D. Garlan. Software Architecture: Perspectives on a Emerging
Discipline. Prentice Hall, Englewood Cliffs, NJ, 1996. ISBN: 0-13-182957-2

[SIM96] M. Simos, et a. Software Technology for Adaptable Reliable Systems (STARS)
Organization Domain Modeling (ODM) Guidebook Version 2.0 (STARSVC-
A025/001/00). Manassas, VA: Lockheed Martin Tactical Defense Systems, 1996.

[SIRO2] N. Siram. An Architecture for the UniFrame Resource Discovery Service. MS
Thesis. Indiana University Purdue University Indianapolis, March 2002.

[STEQQ] B. Stearns. JavaBeans 101, Part |. October 2000.
http://devel oper.java.sun.com/devel oper/onlineT raining/Beans/bean0Ll/index.html.

257

[SUNO2] C. Sun, R. Rae, A. Olson, M. Auguston, B. Bryant, C. Burt, Z. Huang.
Composition and Decomposition of Quality of Service Parameters in Distributed
Component-based Systems. To appear in Prodeedings of the Fifth International
Conference on Algorithms and Architectures for Parallel Processing (ICA3SPP 2002).

[SUNO3] C. Sun, R. Ragje, A. Olson, B. Bryant, C. Burt and M. Auguston. A Composition
Model for the Response Time and Throughput in Distributed Component-Based Systems.
Technical Report, TR-0808-03, Department of Computer and Information Science,
IUPUI. May 8, 2003.

[SMO01] Sun Microsystems. Java™ 2 Platform Enterprise Edition Specification, Version
1.3. Sun Microsystems, August 2001. http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf

[SMO02] Sun Microsystems. The J2EE Turorial ™. Sun Microsystems, April 24, 2002.
http://java.sun.com/j 2ee/tutorial/.

[SM02a] Sun Microsystems. Developing Enterprise Applications Using the J2EE™
Platform. Sun Microsystems, August 2002.

http://devel oper.java.sun.com/devel oper/onlineT raining/J2EE/Intro2/j 2ee.html

[SMO3] Sun Microsystems. Java 2 Platform, Standard Edition (J2SE), v1.4.0.
http://java.sun.com/j2se/1.4/, 2003.

[SM03a] Sun Microsystems. Javabeans Component Architecture Documentation.
http://java.sun.com/products/javabeans/docs/, 2003.

[SM03b] Sun Microsystems. JDBC™ API.
http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/, 2003.

[SMO03c] Sun Microsystems. Java Transaction APl (JTA).
http://java.sun.com/productg/jta/, 2003.

[SM03d] Sun Microsystems. The JNDI Tutorial.
http://java.sun.com/products/jndi/tutorial/, 2003.

[SMO03€] Sun Microsystems. J2EE Connector Architecture.
http://java.sun.com/j2ee/connector/, 2003.

[SMO3f] Sun Microsystems. Java API for XML Processing (JAXP) Documentation.
http://java.sun.com/xml/jaxp/docs.html, 2003.

[SMO03g] Sun Microsystems. Java Remote Method Invocation (RMI).
http://java.sun.com/products/jdk/rmi/

258

[SZY99] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, ISBN 0-201-17888-5, 1999, page 34.

[VANOO] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. ACM SIGPLAN Notices, 35(6):26--36, June 2000.

[VANO2] A. van Deursen, P. Klint. Domain-Specific Language Design Requires Feature
Descriptions. Journal of Computing and Information Technology, 10(1):1-17, 2002.

[VAROZ] C. Varghese. Examining, Documenting, and Modeling the Problem Space of a
Variable Domain. MS Thesis. Indiana University Purdue University Indianapolis, June
2002.

[WEBO2] The Web Services Community Portal, http://www.webServices.org, 2002.

[WWWO03] World Wide Web. HTTP - Hypertext Transfer Protocol.
http://www.w3.org/Protocol s/, 2003.

[YOU95] D. Young. Object-Orientated Programming with C++ and OSF/Motif.
Prentice-Hall, 1995.

[ZHAOQ2] W. Zhao. Two-Level Grammar as the Formalism for Middleware Generation in
Internet Component Broker Organizations. Proc. of GPCE'2002 Young Research
Wor kshop. Pittsburgh, PA, October 2002. http://www.cs.uni-
essen.de/dawis/conferences GCSE_SAIG_Y RW2002/submissions/final/Zhao.pdf

